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Motivation: towards two-loop numerical calculation

e Aim to O(1%) precision for LHC processes = Automation of two-loop calculation

e Higher-order calculations are usually performed in D dimension to regularise divergences in Feyn-

man integrals, but D-dim vector cannot be implemented in a numerical program.

e Automated numerical tools construct the numerator of loop integrand in 4-dim, e.g.
OpPENLOOPS, RECOLA, MADLOOP at one-loop level.

e Rational terms is the ingredient, which reconstructs the missing terms originated from

(D — 4)-dim part of loop numerator, that enables the automated methods.
=> one loop: rational counterterms of type Ry [Ossola, Papadopoulos, Pittau, Garzelli et al., 08', 09']

=> in this talk: two-loop UV rational counterterms
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Introduction to one-loop rational terms

Amplitude of amputated one-loop diagram ~ in D = 4 — 2¢ dimension

N(q . _ _
) with  Dy.(q1) = (a1 + pi)” — mj;

A, = QE/dm - —,
Ly i Dy(q1)---Dn—1(q1)

Rational term emerges by splitting numerator into 4-dim and e-dim parts

) N q = q+q
N(q) = N(q)+N(q), with o= At
ghv = g 4 ghv

leads to
ALy Ayt Ry,
—— ——
compute compute
numerically analytically

e 0R, N from interplay between e-dim A and % UV pole. = requires technique to extract UV pole



Tadpole decomposition [Chetyrkin, Misiak, Miinz, 98, Zoller, 14]

The UV divergence can be captured by massive tadpole decomposition of denominators

L L Mo
Dy.(q1) ¢ — M? ¢ — M? Dy(q)
S—— ~ ~~ -~
leading UV tadpole subleading UV term
O(1/47) O(1/q)
with
Ao (a — 2 _ 94 . 2 _ pf2
K@ pE) = —pp— 24 pp +my,

Apply recursively to obtain tadpole expansion (S y) up to order (1/q;)" 2

X
= UV-div tadpoles + UV-finite remainder

o=0
N _/
NV

Sx(1/Dy)

Dy(q1)




Rational terms from UV singularities

e Use tadpole expansions S x to fully isolate UV divergent part (of degree X)

_ _ Nlq) + N N(G))AL)
Aisluy g = Sx /dCﬂ Do(q <>.> - CH /dq1 Z & ()q}\zla
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UV-divergent tad pole integrals

e Define K operator extracts full UV pole contribution, with splitting of numerator into 4-dim

and e-dim
KALfY — _5Z1,’}/ —|‘ 67?/177
——
1 MS pole finite
€ rational term

* 'R, . and 07 , from same UV singularity = 0R, N local counterterm like 07 y

o 0R, N does not correspond to a finite renormalisation of fields and couplings in bare Lagrangian,

e.g. there is a rational term of 4-photon vertice.



First object in two-loop diagram: subdivergence

e Subdivergence originates from the UV divergent one-loop subdiagram

=> needs to be firstly subtracted in renormalisation procedure
e Subdiagram has D-dim external loop momenta
One-loop diagram with 4-dim ¢o:
Do (a . 2_ 2195 2
pane) = (a+e) =a+2a-e+¢
4—2le

One-loop subdiagram with D-dim ¢ = ¢9 + ¢o:

Dy(qi, @) = Di(q, @)+ 2q-@+3)

\ . 7
-~

e-dim

— extra pole term cj%/e can show up

= pole structure changes in 4-dim numerator case



Subdiagram with D-dim external momentum ¢, and 4-dim numerator

Tadpole expansion

S 1 _ 1 +—(QQ+§2>2—2(¥1'(qQ+§2)—M2+
g DLy VE 7 — M2
(1 + a2+ @) T (¢ )

Contribution to UV pole

q2TI y _ N(q1. QQ A(G1, g2 + @)
K A7 (@) = K [ Z T

|

= =027 ,(@2) - 52?,7(472)

QQT \

-~

% MS pole  extra pole of O(1)

o 5Zi,y(c’jg) is non-vanishing only in quadratic divergent subdiagrams, and has the form

021 4(p) o« = = O(1)



Renormalised one-loop subdiagrams

Subtract poles and rational terms in both D- and 4-dim, we can identify amplitudes with

AT (@)~ KA (@) = A (@) - KA (@) +O(,q)
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D-dim full subtraction 4-dim full subtraction
Recall
KA, (@) = —025 (@) +R{, (@) + O()
KAT, (@) = —021,(q) =027, (})

= Renormalised one-loop sub-amplitude

Al (@) + 028 (@) = AT (02) + 625 (q2) + 027 ,(G2) + 0RT (q2) +Ole, §)

\ 4

WV WV TV
D-dim renormalisation 4-dim renormalisation rational parts
compute numerically



Renormalisation of irreducible two-loop diagrams

Renormalisation of D-dim amplitude of diagram I' with R operation [Caswell and Kennedy, 82’

RAy = Apr+) 071 A+ 0251

)

N~ ——
sub-div local two-loop
divergence

Example: QED vertex (D € {D, 4} be the numerator dimension)

RAyp w<<§ w<§;wm w@<azzp
D,=D




Structure of two-loop UV rational terms [Pozzorini, HZ, Zoller, 20]

Relation between renormalised amplitude in D, = D and D, = 4:

RAr = |Ayg+ E E(SZL% +0Z1 ., +0Ry 4) A psy, T (5227F+5R27F)] + Ofe)
Vi —~- h v 1 Dp=4
subdivergences local two-loop
divergence

Example: QED vertex

sz\z,r = W@ i W<é<5zlm T 521,% +O0R, ) + m‘X<<522,F +0Ryp)| +O(e)
Dy=4
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Two-loop diagrams without global divergence (Proof)

Goal: to show there is no 0R, p:
No global divergence = at most one subdivergence to be subtracted

AVAN AVAN

RJé_lQaF — (Alavl + 5217’%) . ALF/VZ ~ .8 1 T
N——

>

A\ 4

ANS ANS

(a) UV porersubtracted (b) no divergence

— (Ay, + 021, 40714, + R ) - Ay 1) +O(E)

-~

with 4-dim numerator

= Ay + (521’% + 021 ., + 5731’7) - A
This implies that

1,F/% + O(E)

two-loop 0Rop = 0 and 0Z, = 0

= only globally divergent two-loop diagrams contribute to 0R,, 1~ and 0.7, -

= finite set of /R, - and 07, - counterterms in any renormalisable theories
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Two-loop diagrams with global divergence (Proof)

Goal: to show 5R2 r is indeed a local counterterm:

e Isolates all divergences from three chains of loop momenta ¢; into tadpoles by tadpole ex-

(4)

pansion S/ on each chain
1

g2 g 4

AZ,F = SX18X2SX3 Ao + subdivergent terms 4+ finite terms
) global d?;ergence g subtracted ;rsubdiagram
q1 -
B / dq1dg> N, ) A1
N 7 Nitoy (- No+o
e o (07 — M?) 7 (g5 — M) R
43 = q1+42 N ~ _

globally divergent tadpoles ./_lQ,ptad

+ irrelevant terms

e Only "simple" tadpoles A, Lo contributes to two-loop /R, - & 07, -

= polynomial in external momenta and masses (upon subdivergence subtraction)
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Calculations of rational terms in any renormalisation scheme

For calculation in a generic multiplicative renormalisation scheme Y with scale factor
ty, = (Sy(,uo/,uR , for example the QED vertex

| |
R - ns@zw<§ s w<§azg%;>
1=1
D,=D

3
- Hsgg M<é (623) +8 (6217 + 0R1))
1=1
D,=4

e One-loop 5Z( W)z and 57392 contain only trivial scheme dependence through scale factor 5.

e Two-loop 572;};) contains non-trivial scheme dependence from the interplay of mass and field

renormalisation and e-dim part of numerator. [Lang, Pozzorini, HZ, Zoller, 20']
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Two-loop rational terms in SU(N) & U(1) gauge theories

Independent calculations are done within GEFICOM [Chetyrkin, Zoller] and in-house frameworks.

Example: Fermion two-point function in Feynman gauge and renormalisation scheme Y

. . oy
e i, (v 4 .

1, 5 ® 5 =2 5739@ = 1044, (O;WY> [5R2 il 0, T 5Rg‘j“f)f Mt O,y

A 7 61 5) 43 1087 59
SRY) = (SC2— —ChCp+=T Ty oo Ti

2 ff (6 P55 CACE TG anCF) £t Ct 516 CACr + — = TF T Cr
5(Y) | 2 ca(Y) 2 sy
~ Cr (5217& +3020 -3 525&1)

S ) 5 B 199 11

R27ff = 2CF+ CACF_g rneCr | e —I—CF _CACF_ETanCF

1« L,gp

+ Cr (252< 1482 ——52{{3--5% >)

o 672;};) is local counterterm, i.e. polynomial in p and m
° 573; F) is derived in terms of generic renormalisation constants = applicable to any scheme

e Full set of results in Yang-Mills theories are available at [arXiv: 2007.03713]
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Summary

e Renormalised D-dim two-loop amplitude can be constructed by amplitude with 4-dim nu-
merator 4 rational counterterms

RAyp = Ayp+ Y 02y, +0Z,, +0R,,) A
i

1.0/ T (0249 +0Ry 1)

=> an important step towards the two-loop automated numerical method.

e We provide a generic method to compute 0R, - from one-scale tadpoles, and show that
0R, r is process-independent local counterterm.

e Full set of SU(N) & U(1) rational terms at two loops in generic renormalisation schemes.
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Backup
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One-loop subdiagram example: photon self-energy

Let Dy, € {D, 4} be the dimension of numerator, we have

DD:>K/

and

D=4 = K/d‘_

—Tl” Vmgﬂ%(% + ﬁz)]

G (1 + @)?

Tr algﬂ%(% + gQ)]

G (G + @+ G2)?

= Renormalised photon self-energy insertion:

ay

5Zl,y(q_2)

Qg

(%1

_|_

1 4 ~2 0y
(\ 3((1 g

~60Z, (@) 57317(@) 0

1 4 2 oo o7 pNe? 2 ~2
5(\3@9 — 45"¢5?) S0 9

_521,7(%) _52177/@2)

ay

(521,7(92) + 521,7(@2) + 5R1,7<QZ))

Qg
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Non-trivial renormalisation scheme dependence

Split the 1st-order multiplicative renormalisation (derivative) operator into finite (AY") and MS parts

- (A S
o) =t (0™ + D)

The two-loop 5739? contains finite renormalisation over one-loop 573?;), and non-trivial term 5/C;AFY)
SRy = (@52 0RYY + (1502 D R 4 axc
where
AY) AY (AY
Méf =t (Dg )Al,F > 07y, | Am/v) 7 0
Y
(AY) cp(X)
=ty Z 521,x 5,C1,F
X RCs

AY) . .. T - : :
° 5/Cé T ) is due to non-commutativity of multiplicative renormalisation and counterterm insertion

(x)

in D =4, but it can be controlled through a new kind one-loop counterterm 5/@1 P
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