SUSY-QCD Corrections to Pseudoscalar Higgs Production via Gluon Fusion

Lukas Fritz E. Bagnaschi, S. Liebler, M. Mühlleitner, D. Nguyen, M. Spira

Zürich PhD Seminar 8. September 2020

Outline i

1. Introduction

- 2. Existing Results
- 3. Calculation
- 4. <u>Results</u>

Introduction

MSSM has extended Higgs sector

 $h, H, \mathbf{A}, H^{\pm}$

 \rightarrow Find SUSY-QCD corrections to the production cross section numerically

Production at the LHC via

• (pure) QCD corrections are large

[Spira '93]

[Harlander et al. '09]

[Anastasiou, Melnikov '02]

- Can be reused for decay $A \to \gamma \gamma$, an important decay channel

Susy QCD

Supersymmetry \rightarrow every particle gets a (heavy) super-partner

New Interactions:

5

Existing Results

Δ_b Approximation

Low energy effective Theory

- $\Delta_b \sim \frac{\alpha_s}{\pi} \tan \beta$ $\tilde{g}_b^A = g_b^A \frac{1 \frac{\Delta_b}{\tan^2 \beta}}{1 + \Delta_b}$
- One-loop exact, resums large $\tan \beta$ effects

[Carena, Garcia, Nierste, Wagner '00]

[Guasch, Häfliger, Spira '03]

Analytic results exist as asymptotic expansion valid upto

$$\mathcal{O}\left(\frac{M_A^2}{M^2}\right) \quad \& \quad \mathcal{O}(\frac{m_t^2}{M^2}) \qquad \mathcal{O}\left(\frac{m_b^2}{M_A^2}\right) \quad \& \quad \mathcal{O}\left(\frac{m_b}{M}\right)$$

[Harlander, Hofmann '06]

[Degrassi, Vita, Slavich '11]

Calculation

Diagrams

We use Larin scheme

• Only *D*-dimensional objects

•
$$\epsilon^{\mu_1\nu_1\rho_1\sigma_1}\epsilon_{\mu_2\nu_2\rho_2\sigma_2} = -\det \begin{vmatrix} g_{\mu_2}^{\mu_1} & g_{\nu_2}^{\mu_1} & g_{\rho_2}^{\mu_1} & g_{\sigma_2}^{\mu_1} \\ g_{\mu_2}^{\nu_1} & g_{\nu_2}^{\nu_1} & g_{\rho_2}^{\nu_1} & g_{\sigma_2}^{\nu_1} \\ g_{\mu_2}^{\rho_1} & g_{\nu_2}^{\rho_1} & g_{\rho_2}^{\rho_1} & g_{\sigma_2}^{\rho_1} \\ g_{\mu_2}^{\sigma_1} & g_{\nu_2}^{\sigma_1} & g_{\rho_2}^{\sigma_1} & g_{\sigma_2}^{\sigma_1} \end{vmatrix}$$

• $\{\gamma_5, \gamma^{\mu}\} = 0$

11.2 11.2 11.2

[Larin '93]

Other schemes are being investigated:

• Breitenlohner Maison scheme $\{\gamma_5, \gamma^{\mu}\} \neq 0$

[Breitenlohner, Maison '77]

• Pauli-Villars regularization to avoid the problem

Numerical Integration

After Feynman Parametrization:

$$I = \int_0^1 d^d x \quad \frac{f(x)}{N^{n+2\varepsilon}(x)}$$

upto 5 parameters

parametrized, such that N(x) is quadratic polynomial in Feynmanparameters Example:

$$N(x) = M_A^2 (x_1 - 1) x_2 (1 - x_3) (x_3 + x_1 (x_3 + x_4 - 1) (x_5 - 1)) x_5$$

+ $M_{\tilde{g}}^2 x_1 x_5 + M_Q^2 (x_5 - x_1 x_5) + M_{\tilde{q}_{\alpha}}^2 (x_1 - 1) x_1 (x_5 - 1)$

To get finite and divergent part expand in ε Divergent integrals can arise from factors $x^{-1+\varepsilon}\Rightarrow$ Endpoint subtraction

$$\int_{0}^{1} dx \quad x^{-1+\varepsilon}f(x) = \int_{0}^{1} dx \quad \underbrace{x^{-1+\varepsilon}(f(x) - f(0))}_{\text{regular in x}} + \underbrace{\int_{0}^{1} dx \quad x^{-1+\varepsilon}f(0)}_{=\frac{f(0)}{\varepsilon}}$$

Iteration 8: 80000000	integrand evaluations so far
[1] 107.257 +- 87.4996	chisq 2.60227 (7 df)
[2] 52.3746 +- 81.1029	chisq 4.40932 (7 df)
[3] 59011.6 +- 53836.4	chisq 7.80152 (7 df)
[4] 81290.5 +- 140535	chisq 5.79475 (7 df)
Iteration 9. 90000000	integrand evaluations so far
[1] 106.833 + 82.401	Chisq 2.60247 (8 df)
[2] 16.4968 +- 75.2997	chisq 5.82753 (8 df)
[3] 43936.9 +- 53032.7	chisq 10.4471 (8 df)
[4] 57839.8 +- 139436	chisq 7.58229 (8 df)
Iteration 10: 1000000	00 integrand evaluations so far
[1] 72.2666 +- 79.8743	chisq 5.51663 (9 df)
[2] 24.5327 +- 69.712	chisq 5.90723 (9 df)
[3] 37029.3 +- 52329.3	chisq 11.0909 (9 df)
[4] 34889.4 +- 118027	chisq 7.67784 (9 df)

Thresholds

after expansion in ε

$$I = \int_{0}^{1} d^{d}x \quad \frac{g(x) + h(x)\ln(N(x))}{N^{n}(x)}$$

What happens for N(x) = 0? Microcausality: Masses from propagators are given small imaginary part

Usually $\lambda \to 0$, but for numerical integration we set λ sufficiently small but finite.

Thresholds

Thresholds

Integration by parts

$$\frac{\nabla N}{N^n} = \frac{1}{n-1} \vec{\nabla} \frac{1}{N^{n-1}}$$

Example in one dimension:

$$N(x) = ax^{2} + bx + c$$

$$\Rightarrow 1 = \underbrace{\frac{1}{4ac - b^{2}}}_{\text{constant}} \left(\underbrace{4a}_{p_{0}} \cdot N(x) \underbrace{-(2ax + b)}_{p_{1}} \cdot \partial_{x} N(x) \right)$$

Iteration 8: 80000000 integram	nd evaluations so far
[1] -0.419694 +- 0.000978278	chisq 4.17753 (7 df)
[2] 0.0699153 +- 0.000950702	chisq 4.28112 (7 df)
[3] 1.972 +- 0.050616 chisq 5	5.16887 (7 df)
[4] -1.3137 +- 0.0504296	chisq 6.73128 (7 df)
Iteration 9: 90000000 integran	nd evaluations so far
[1] -0.420145 +- 0.00071454	chisq 4.63387 (8 df)
[2] 0.0696467 +- 0.000687736	chisq 4.44859 (8 df)
[3] 1.98024 +- 0.0339793	chisq 5.21711 (8 df)
[4] -1.3158 +- 0.0342964	chisq 6.73449 (8 df)
Iteration 10: 100000000 integr	and evaluations so far
[1] -0.420004 +- 0.00057225	chisq 4.74287 (9 df)
[2] 0.0694324 +- 0.00054715	chisq 4.71313 (9 df)
[3] 1.97658 +- 0.02691	chisq 5.24823 (9 df)
[4] -1.33638 +- 0.0284265	chisq 7.88515 (9 df)

Matrix element of $gg \rightarrow A$ for vanishing momenta is ABJ-anomaly

Adler Bardeen Theorem \rightarrow no corrections at higher orders Requires correct LE EFT \Rightarrow Include Δ_b and Δ_t

Results

$$F_q = F_q^{LO} \cdot \left(1 + \frac{\alpha_s}{\pi} \mathbf{C}_{\mathbf{q}}^{\mathsf{NLO}}\right) \qquad \qquad q = t, b$$

$M_A \operatorname{scan}, \operatorname{low} \tan \beta$

M_A scan, high $\tan \beta$

- Full mass dependence shows significant differences compared to existing approximations
- Threshold singularities can be controlled
- Outlook: Inclusion into hadronic codes