Robust cosmology through combined probes Alexander Reeves

With Andrina Nicola, Alexandre Refregier, Simone Ferraro, Martin White

Based on 2309.03258, 2502.01772

Combined probes: motivations

- 1. Combining data from independent experiments allows to identify and mitigate systematics
- 2. Test consistency between probes analysed in a consistent framework
- Many different scales and redshifts: end-to-end test of cosmological models with strong constraints due to degeneracy breaking

Combined probes: motivations

- 1. Combining data from independent experiments allows to identify and mitigate systematics
- 2. Test consistency between probes analysed in a consistent framework
- Many different scales and redshifts: end-to-end test of cosmological models with strong constraints due to degeneracy breaking

Combined probes: our approach

- Build a consistent pipeline integrating several probes at the 2pt level
- Restrict to scales (and summary statistics!) where simple modelling can be applied
- Carefully quantify tensions between data before combining
- Use emulators for theory predictions and implement all likelihoods in JAX for JIT + GPU acceleration when sampling

The combined probes pipeline

5

Apply framework to data

- CMB: Planck PR3, Planck PR4 (Hillipop), ACT DR4+WMAP
- BAO: DESI Y1
- Low-z: CMB lensing + ISW (PR3) X KiDS-1000 X BOSS DR12 (9x2pt)
- Tomographic measure 43 separate 2-point functions for low-z data vector

ETH zürich

Internal consistency

- Amplitude parameter let free for each probe
- Three deviations from
 expectations:
 - Planck PR3: A-lens systematic detection
 - KiDS z-bin 2: redshift systematic detection
 - KiDS z-bins 4/5: S8 tension

S8 measurement (ACDM)

- Novel 9x2pt measurement from this data combination. Consistent with S8 found in other contemporary analyses
- Tension with CMB likelihoods -"S8-tension" which is 2.2σ in for our baseline (Planck PR4)
- In full parameter space reduced to 1.7σ and further still in extended models, and adding BAO (see later)

 $S8 = \sigma_8 \sqrt{\Omega_m/0.3}$

S8 measurements from (in order vertically):

DES collaboration, 2022, Xu et. al 2023, Heymans et. al 2020, Asgari et.al, 2020, Sailer et. al 2024, Farren et. al 2024, Chen et. al 2024.

- Find models far from a CC worsen the S8 tension between CMB and low-z data (especially KiDS-1000)
- This means that including KiDS-1000 in the analysis pushes constraints towards a CC
- Caveat: based on DESI Y1 BAO and KiDS-1000 (both updated now!)

Swiss cosmology days

Reeves et al. (2025)

ETH zürich

9

- Find models far from a CC worsen the S8 tension between CMB and low-z data (especially KiDS-1000)
- This means that including KiDS-1000 in the analysis pushes constraints towards a CC
- Caveat: based on DESI Y1 BAO and KiDS-1000 (both updated now!)

Reeves et al. (2025)

ETH zürich

Swiss cosmology days

- Find models far from a CC worsen the S8 tension between CMB and low-z data (especially KiDS-1000)
- This means that including KiDS-1000 in the analysis pushes constraints towards a CC
- Caveat: based on DESI Y1 BAO and KiDS-1000 (both updated now!)

Reeves et al. (2025)

- Find models far from a CC worsen the S8 tension between CMB and low-z data (especially KiDS-1000)
- This means that including KiDS-1000 in the analysis pushes constraints towards a CC
- Caveat: based on DESI Y1 BAO and KiDS-1000 (both updated now!)

Reeves et al. (2025)

- Find models far from a CC worsen the S8 tension between CMB and low-z data (especially KiDS-1000)
- This means that including KiDS-1000 in the analysis pushes constraints towards a CC
- Caveat: based on DESI Y1 BAO and KiDS-1000 (both updated now!)

Reeves et al. (2025)

ETH zürich

Swiss cosmology days

Neutrino masses

• Fiducial neutrino mass measurement from combination:

 $M_{\nu} < 0.12 \mathrm{eV}$

- Explored effect of "A-lens" parameter finding the combined probes approach makes upper limits robust to this systematic
- Upper limit loosened when considering DDE background

Outlook and conclusions

- Multiprobe analyses are powerful for:
 - a. Identifying and mitigating systematics that do not correlate between datasets
 - b. Exploring and understanding tensions between datasets
 - C. Providing strong constraints on cosmological parameters via degeneracy breaking
- Including KiDS-1000 data in a joint analysis pushes DDE constraints towards a CC
- DDE models can loosen neutrino mass bounds, relieving tension with neutrino oscillation data
- Several recent data releases- ACT DR6, DESI DR2 BAO, KiDS legacy. Currently working analysis with updated BAO, LSS and now SNe data, exploring early and late extensions – say tuned!

BACKUP

Preference for negative neutrino mass?

- We know from neutrino oscillations that we must have the total neutrino mass greater than 0.058eV. Find a 2-3σ tension with this data
- How do we interpret this?
 - ∠ An issue with the assumed cosmological model?

 - Z Expected statistical fluctuation within the uncertainties of current data?

Validate pipeline with mock data

- Mock analysis of CMB, LSS (galaxy clustering, weak lensing and CMB lensing/ISW)
- Validate covariance matrix and inference side of pipeline
- Checked the pipeline reproduces literature results with real data for individual likelihoods

The multi-probe covariance matrix

- Survey noise modelled on the map level
- Using 2000 random
 cosmogrid fiducial
 simulations
- Checked convergence
- CMB primary and BAO treated separately

Reeves et al. (2023)

UFalcon2

- Use Born approximation weak lensing kernel
- Approximate integral over matter density as sum over lighcone shells
- Input source n(z) distribution

Cosmogrid (PkDGraV N-body simulations) Identical to weak lensing shear case but with Dirac-function source at z_cmb

$$\kappa(heta_{
m pix}) pprox rac{3}{2} \Omega_m \sum_b W_b \left(rac{H_0}{c}
ight)^3 rac{N_{
m pix}}{4\pi} rac{V_{
m sim}}{N_{
m p}} rac{n_p(heta_{
m pix},\Delta\chi_b)}{\mathcal{D}^2(z_b)}$$

$$W_b^{z_s} = \left(\int_{\Delta z_b} \frac{\mathrm{d}z}{E(z)} \frac{\mathcal{D}(z)\mathcal{D}(z, z_s)}{\mathcal{D}(z_s)} \frac{1}{a(z)}\right) / \left(\int_{\Delta z_b} \frac{\mathrm{d}z}{E(z)}\right)$$

UFalcon2

- Linear bias model currently implemented
- Ongoing work to introduce EFTofLSS forward model

UFalcon2

- New routine utilising the Spherical Bessel transform
- Significant improvement over previous implementation requiring interpolation over snapshot to estimate potential

Covariance matrix validation

A cosmologists neutrino mass review

- From oscillation experiments (e.g. Super-Kamiokande, SNO, KamLAND) there are two possible mass orderings: normal ordering (NO) and Inverted ordering (IO)
- Lab based measurements: KATRIN upper limit of electron anti-neutrino mass of 0.8eV (doi: 10.1038/s41567-021-01463-1)
- Cosmology sensitive to sum of neutrino mass eigenstates* ()- current precision at least 10X stronger** than lab based measurements

 $M_{\nu} < 0.072 \mathrm{eV}$

Planck + DESI Y1 BAO in $\nu\Lambda CDM$

* Based on sensitivity of current data

** Model dependent

DESI collaboration, 2024

Internal consistency: measuring tensions

Model	Experiment	$\sigma S8$ (Gaussian)	n_{σ} (All Params)
	Planck PR3	2.45	1.964 ± 0.006
ΛCDM	Planck PR4	2.15	1.703 ± 0.005
	ACT (DR4) + WMAP	2.04	1.595 ± 0.004
	$Planck \ PR3 + DESI \ Y1$	1.76	1.271 ± 0.004
	$Planck \ \mathrm{PR4} + \mathrm{DESI} \ \mathrm{Y1}$	1.68	1.301 ± 0.004
	ACT (DR4) + WMAP + DESI Y1	1.60	1.252 ± 0.004
	Planck PR3	2.54	1.655 ± 0.005
$ u\Lambda\mathrm{CDM}$	Planck PR4	2.12	1.469 ± 0.004
	ACT (DR4) + WMAP	1.62	1.699 ± 0.005
	$Planck \ PR3 + DESI \ Y1$	1.66	1.320 ± 0.004
	$Planck \ \mathrm{PR4} + \mathrm{DESI} \ \mathrm{Y1}$	1.62	1.263 ± 0.004
	ACT (DR4) + WMAP + DESI Y1	1.41	1.172 ± 0.005
	Planck PR3	0.00	1.042 ± 0.005
$w_0 w_a \text{CDM}$	Planck PR4	0.28	0.725 ± 0.004
	ACT (DR4) + WMAP	0.46	0.970 ± 0.005
	$Planck \ PR3 + DESI \ Y1$	0.80	1.734 ± 0.006
	$Planck \ PR4 + DESI \ Y1$	1.05	1.282 ± 0.004
	ACT (DR4) + WMAP + DESI Y1	0.87	0.923 ± 0.001

Parameter differences full parameter space tension

Internal consistency: measuring tensions

Model	Experiment	$\sigma S8$ (Gaussian)	n_{σ} (All Params)	
	Planck PR3	2.45	1.964 ± 0.006 \longleftarrow	Largest
ΛCDM	Planck PR4	2.15	1.703 ± 0.005	value in
	$\operatorname{ACT}(\operatorname{DR4}) + \operatorname{WMAP}$	2.04	1.595 ± 0.004	Tabla
	$Planck \ PR3 + DESI \ Y1$	1.76	1.271 ± 0.004	Table
	$Planck \ \mathrm{PR4} + \mathrm{DESI} \ \mathrm{Y1}$	1.68	1.301 ± 0.004	
	ACT (DR4) + WMAP + DESI Y1	1.60	1.252 ± 0.004	Gonoral
	Planck PR3	2.54	1.655 ± 0.005	General
$ u\Lambda\mathrm{CDM}$	Planck PR4	2.12	1.469 ± 0.004	decrease
	$\operatorname{ACT}(\operatorname{DR4}) + \operatorname{WMAP}$	1.62	1.699 ± 0.005	when
	$Planck \ PR3 + DESI \ Y1$	1.66	1.320 ± 0.004	
	$Planck \ \mathrm{PR4} + \mathrm{DESI} \ \mathrm{Y1}$	1.62	1.263 ± 0.004	
	ACT (DR4) + WMAP + DESI Y1	1.41	1.172 ± 0.005	and in
	Planck PR3	0.00	1.042 ± 0.005	avtended
$w_0 w_a \text{CDM}$	Planck PR4	0.28	0.725 ± 0.004	
	ACT (DR4) + WMAP	0.46	0.970 ± 0.005	models
	$Planck \ PR3 + DESI \ Y1$	0.80	1.734 ± 0.006	
	$Planck \ PR4 + DESI \ Y1$	1.05	1.282 ± 0.004	
	ACT (DR4) + WMAP + DESI Y1	0.87	0.923 ± 0.001	

Single probe neutrino mass constraints (why does this not help S8?)

Baseline neutrino mass constraints tension with orderings

- P(M_nu<0.06)=0.29 ~ 0.5sigma tension with NO minimal mass
- P(M_nu<0.10)=0.078 ~ 1.7sigma tension with IO minimal mass

Note this is with a hard prior at M_nu=0 and so these tensions are lower than if we modelled the impact of an effective negative neutrino mass

Constraining power from low-z data on DESI BAO bins

Fisher information for BAOs low-z vs DESI Y1

MC norm correction

Model selection

Table 10: Comparison of Δ AIC compared to the baseline Λ CDM model for different cosmological models under various datasets. The first block shows results *without* BAO, and the second block shows results *with* BAO.

No BAO						
	$Planck \ \mathrm{PR3} + \mathrm{low}\text{-}z$	$Planck \ \mathrm{PR4} + \mathrm{low-}z$	$\mathrm{ACT} + \mathrm{WMAP} + \mathrm{low}\text{-}z$			
$\nu \Lambda { m CDM}$	+2.22	+3.12	+1.95			
$w_0 w_a { m CDM}$	-0.95	+2.48	+3.40			
$ u w_0 w_a ext{CDM}$	+1.50	+4.95	+4.90			
With BAO						
	$Planck \ PR3 + low-z + BAO$	$Planck \ PR4 + low-z + BAO$	ACT + WMAP + low-z + BAO			
$\nu \Lambda { m CDM}$	-1.14	+0.24	2.33			
$w_0 w_a { m CDM}$	-1.39	+1.13	5.73			
$\nu w_0 w_a { m CDM}$	+0.06	+2.99	4.87			

A-lens parameter

- Having m_i<0 allows for a higher amplitude of clustering which fits the same "excess lensing" residual in PR3
- Choose PR4 + low-z as baseline data combination

Combined probes: key challenges

- 1. Large data vectors/covariance matrix
- 2. Different systematics and noise modelling for each probe with many associated parameters
- 3. Tensions between datasets: how justified are we in combining data?

A-lens parameter

• A_L is a phenomenological re-scaling parameter whereby (Calabrese et al. 2008):

 $C_{\ell}^{\phi\phi} \rightarrow A_L C_{\ell}^{\phi\phi}$ (only for the impact of lensing on CMB primary!)

- Measures consistency between CMB lensing information in the CMB primary and amplitude of CMB primary: expect A_L =1 in Λ CDM
- CMB likelihoods:
 - Planck PR3 gives $A_L > 1$ at 3σ
 - PR4 favours $A_L > 1$ at 0.75 σ
 - ACT+WMAP has no preference for A_L >1

