Gravitational-wave cosmology with **Extreme Mass Ratio Inspirals**

Swiss Cosmology Days 2025 - ETH Zürich - 06.06.25

Danny Laghi

Universität Zürich^{⊍zн}

Extreme Mass Ratio Inspirals

vertical direction

- Binary systems with mass ratio $m_2/m_1 \sim 10^{-6} 10^{-3}$
- Slow inspiral, 10⁴ 10⁵
 orbital cycles in the final
 year before plunge
- Very accurate measurements of the system parameters, e.g. $\Delta d_L/dL \lesssim 10\%$, $\Delta \Omega \lesssim 10 \, {\rm deg}^2$

Babak+ PRD (2017)

LASER INTERFEROMETER SPACE ANTENNA (LISA)

- Mission adopted by ESA in $2024 \Rightarrow$ Expected launch in 2035
- LISA will observe gravitational waves (GWs) in a yet **unexplored** frequency range $(10^{-4} - 10^{-1} \text{ Hz})$
- Cartwheeling heliocentric orbit, average armlength ~2.5M km

GWs to probe late-time FLRW cosmology

- Complex multi-dimensional GW parameter space explored with nested sampling)
- No need for distance scale ladder to obtain the luminosity distance
- GWs are standard sirens because they are self-calibrated

$$d_L^{EM}(z) = c(1+z) \int_0^z \frac{dz'}{H(z')}$$

= $H_0^2 \left(\Omega_m (1+z)^3 + \Omega_{DE} (1+z)^{3(1+w(z))} \right)$

$$d_{L}^{EM}(z) = c(1+z) \int_{0}^{z} \frac{dz'}{H(z')}$$

$$H(z)^{2} = H_{0}^{2} \left(\Omega_{m}(1+z)^{3} + \Omega_{DE}(1+z)^{3(1+w(z))} \right)$$

$$\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}$$

Individual GW sources at cosmological distances are "standard sirens" computationally intensive stochastic sampling techniques (e.g. MCMC,

matter/DL density today

EMRIs as dark standard sirens

Laghi+ MNRAS (2021)

Nested sampling to explore cosmological parameter space assuming LISA Fisher-Matrix likelihood on the GW luminosity distance

Cross-matching of state-of-the-art EMRI mock catalogues with full-sky simulated galaxy catalogue Babak+ PRD (2017) Henriques+ MNRAS (2012)

Laghi+ MNRAS (2021) $w_0 \sim 7 - 12 \%$ $h \sim 1 - 6\%$ \mathbf{Q}_m \mathcal{W}_{a} 3 22 20 00 00 080 080 00 00 00 00 h Ω_m W_0 W_a $h = H_0 / 100 \,\mathrm{km}^{-1} \mathrm{s} \,\mathrm{Mpc}$ $w(z) = w_0 +$

Modified GW propagation

In General Relativity, GW propagating on FLRW background:

 $\tilde{h}_A'' + 2\mathcal{H}$

$$\mathscr{H}\tilde{h}'_{A} + k^{2}\tilde{h}_{A} = 0 \qquad \qquad \mathscr{H} = a'$$

$$A = +$$

Modified GW propagation

In General Relativity, GW propagating on FLRW background:

 $\tilde{h}_{A}^{\prime\prime}+2\mathcal{H}$

In modified gravity, GW propagating on FLRW background:

$$\tilde{h}_A'' + 2\mathcal{H}\left[1 - \delta(\eta)\right]\tilde{h}_A' + k^2\tilde{h}_A = 0$$

Saltas+ PRL (2014) Nishizawa PRD (2018) Belgacem+ PRD (2018)

$$\mathscr{H}\tilde{h}_{A}' + k^{2}\tilde{h}_{A} = 0 \qquad \qquad \mathscr{H} = a' A = + A$$

Modified GW propagation

In General Relativity, GW propagating on FLRW background:

 $\tilde{h}_{A}^{\prime\prime}+2\mathcal{H}$

In modified gravity, GW propagating on FLRW background:

$$\tilde{h}_{A}^{\prime\prime} + 2\mathscr{H} \begin{bmatrix} 1 - \delta(\eta) \end{bmatrix} \tilde{h}_{A}^{\prime} + k^{2} \tilde{h}_{A} = 0$$

$$\downarrow$$
Modified "friction"

This affects the GW amplitude across cosmological distances

Saltas+ PRL (2014) Nishizawa PRD (2018) Belgacem+ PRD (2018)

$$\mathscr{C}\tilde{h}'_A + k^2\tilde{h}_A = 0 \qquad \qquad \mathscr{H} = a' A = + A$$

GW luminosity distance

"GW luminosity distance":

The net effect is that the quantity extracted from GW observations is a

6

GW luminosity distance

"GW luminosity distance":

A convenient phenomenological

The net effect is that the quantity extracted from GW observations is a

Can we use EMRIs to constrain Ξ_0 + LCDM parameters?

- In Liu, Laghi, Tamanini PRD (2024) we explored:
 - Different astrophysical EMRI models and waveforms (M1/M5/M6 + AKS/AKK)from Babak+ PRD (2017)

Model	Total	EMRI rate [yr ⁻¹] Detected (AKK)	Detected (AKS)
M1	1600	294	189
M2	1400	220	146
M3	2770	809	440
M4	520 (620)	260	221
M5	140	47	15
M6	2080	479	261
M7	15800	2712	1765
M8	180	35	24
M9	1530	217	177
M10	1520	188	188
M11	13	1	1
M12	20000	4219	2279
	Model M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M10 M11 M11 M12	ModelTotalM11600M21400M32770M4520 (620)M5140M62080M715800M8180M91530M101520M1113M1220000	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

Babak+ PRD (2017)

 Different injected values of $\Xi_0 = 0.9, 1.0, 1.2 (n = 2)$

Examples of deviations: O(<10%) Belgacem+ JCAP (2019)

0

Analysis Setup

- Gauge waveform uncertainty by considering two models (AKS, AKK)
- Select EMRIs at SNR>100
- Move to *z*-space using d_L^{GW} and assuming cosmological priors: $h \in [0.6, 0.76], \Omega_m \in [0.04, 0.5],$ $\Xi_0 \in [0.6, 2.0], n \in [0.0, 3.0]$
- Cross-match EMRI sky locations with simulated galaxy light cone (z < 1)
 Henriques+ MNRAS (2019)
 Izquierdo-Villalba+ A&A (2019)

Analysis Setup

- Gauge waveform uncertainty by considering two models (AKS, AKK)
- Select EMRIs at SNR>100
- Move to *z*-space using d_L^{GW} and assuming cosmological priors: $h \in [0.6, 0.76], \Omega_m \in [0.04, 0.5],$ $\Xi_0 \in [0.6, 2.0], n \in [0.0, 3.0]$
- Cross-match EMRI sky locations with simulated galaxy light cone (z < 1)
 Henriques+ MNRAS (2019)
 Izquierdo-Villalba+ A&A (2019)

Standard Sirens

Model Parameters $\begin{array}{l} \text{Num of} \\ \text{Parameters} \\ \hline \text{AKS} \\ \hline \text{AKS} \\ \hline h + \Omega_M + \Xi_0 + n \\ \hline h + \Omega_M + \Xi_0 \\ \hline \text{M1} \\ \hline h + \Xi_0 \\ \hline \end{array} \begin{array}{l} 17 \\ 19 \\ 19 \\ \hline \end{array}$	of StSi AKK 29
Model Farameters AKS $h + \Omega_M + \Xi_0 + n \qquad 17$ $h + \Omega_M + \Xi_0 \qquad 19$ M1 $h + \Xi_0 \qquad 19$	AKK 29
$ \begin{array}{c c} h + \Omega_M + \Xi_0 + n & 17 \\ h + \Omega_M + \Xi_0 & 19 \\ M1 & h + \Xi_0 & 19 \end{array} $	29
$\begin{array}{c c} h + \Omega_M + \Xi_0 & 19 \\ M1 & h + \Xi_0 & 19 \end{array}$	20
M1 $h + \Xi_0$ 19	30
<i>n</i> · = 0	30
$\Xi_0 + n$ 19	32
Ξ ₀ 19	33
$h + \Omega_M + \Xi_0 + n$ 3	5
$h + \Omega_M + \Xi_0$ 3	6
M5 $h + \Xi_0$ 3	6
$\Xi_0 + n$ 3	6
Ξ0 3	7
$h + \Omega_M + \Xi_0 + n \mid 23$	60
$h + \Omega_M + \Xi_0$ 23	65
M6 $h + \Xi_0$ 23	68
$\Xi_0 + n$ 23	69
Ξ ₀ 24	72

Liu, DL, Tamanini PRD (2024)

Analysis Setup

- Gauge waveform uncertainty by considering two models (AKS, AKK)
- Select EMRIs at SNR>100
- Move to *z*-space using d_L^{GW} and assuming cosmological priors: $h \in [0.6, 0.76], \Omega_m \in [0.04, 0.5],$ $\Xi_0 \in [0.6, 2.0], n \in [0.0, 3.0]$
- Cross-match EMRI sky locations with simulated galaxy light cone (z < 1)
 Henriques+ MNRAS (2019)
 Izquierdo-Villalba+ A&A (2019)

Bayesian inference with cosmoLISA Laghi+ MNRAS 2021

Standard Sirens

	Model	Parameters	Num of StS	
	Widder	rarameters	AKS	AK
	M1	$h+\Omega_M+\Xi_0+n$	17	29
		$h + \Omega_M + \Xi_0$	19	30
		$h + \Xi_0$	19	30
		$\Xi_0 + n$	19	32
		Ξ0	19	33
	M5	$h+\Omega_M+\Xi_0+n$	3	5
		$h + \Omega_M + \Xi_0$	3	6
		$h + \Xi_0$	3	6
		$\Xi_0 + n$	3	6
		Ξ0	3	7
	M6	$h+\Omega_M+\Xi_0+n$	23	60
		$h + \Omega_M + \Xi_0$	23	65
		$h + \Xi_0$	23	68
		$\Xi_0 + n$	23	69
		Ξ0	24	72
	Liu DL Tamanini DDD (2024)			

Liu, DL, Tamanini PRD (2024)

EMRIs with LISA can constrain Ξ_0 in several scenarios

EMRIs with LISA can constrain Ξ_0 in several scenarios

- Ξ_0 alone: > 2 8% (90% CI)
- $\Xi_0 + h: > 9 29\%$ and > 4 10%respectively

- M5 10x worse than M1
- 10 yrs 1.4x better than 4 yrs
- Similar constraints for $\Xi_0 \neq 1$

Conclusions and future prospects LISA can probe modified friction in GW propagation

- **EMRIs** used as dark sirens could constrain Ξ_0 at the few-% level
 - Better than current 2G detector constraints Chen, Gray, Baker JCAP (2024)
 - In general as not as good as 3G detector forecasts Belgacem+ JCAP (2019)

What's next?

- New EMRI detection rate and parameter estimation (Piarulli+ in prep.)
- LISA Cosmology Working Group Collaborative Project (Coordinator: DL): 1. New approach: use EMRIs as **spectral** sirens (GW data only) (in prep.) 2. Refined dark siren method: hierarchical likelihood approach to marginalise over EMRI population parameters while using galaxy redshift information (in prep.)

Conclusions and future prospects LISA can probe modified friction in GW propagation

- **EMRIs** used as dark sirens could constrain Ξ_0 at the few-% level
 - Better than current 2G detector constraints Chen, Gray, Baker JCAP (2024)
 - In general as not as good as 3G detector forecasts Belgacem+ JCAP (2019)

What's next?

- New EMRI detection rate and parameter estimation (Piarulli+ in prep.)
- LISA Cosmology Working Group Collaborative Project (Coordinator: DL): 1. New approach: use EMRIs as **spectral** sirens (GW data only) (in prep.) 2. Refined dark siren method: hierarchical likelihood approach to marginalise over EMRI population parameters while using galaxy redshift information (in prep.)

Thank you!

danny.laghi@physik.uzh.ch

Extra-slides

LISA gravitational wave sources

