Elif Ozlem Adiguzel June 05, 2025 Supervised by: Dr. David Harvey, Dr. Yves Revaz

 $\begin{array}{c} \textbf{Model} \\ \Lambda \textbf{CDM} \end{array}$

 $\begin{array}{c} \textbf{Model} \\ \Lambda \textbf{CDM} \end{array}$

Speeding up cosmological simulations with machine learning

Observations

JWST, Euclid Planck

Model ΛCDM

Speeding up cosmological simulations with machine learning

Observations

JWST, Euclid Planck

Simulations

Speeding up cosmological simulations with machine learning

Observations

JWST, Euclid Planck

Speeding up cosmological simulations with machine learning

Observations

JWST, Euclid Planck

Modeling the Cosmos Through Simulations Observations Model JWST, Euclid ΛCDM Planck **Simulations** compare

Speeding up cosmological simulations with machine learning

Modeling the Cosmos Through Simulations Observations Model ******** JWST, Euclid test ΛCDM Planck **Simulations** compare

Speeding up cosmological simulations with machine learning

Image Credit: TNG Collaboration

Image Credit: TNG Collaboration

Speeding up cosmological simulations with machine learning

• New observations challenge current models

- New observations challenge current models
- Bigger, higher resolution simulations are needed

Image Credit: TNG Collaboration

- New observations challenge current models

Image Credit: TNG Collaboration

- Bigger, higher resolution simulations are needed
 - Time consuming

- New observations challenge current models

Image Credit: TNG Collaboration

- Bigger, higher resolution simulations are needed
 - Time consuming
 - Different modules for each stage

- New observations challenge current models

Image Credit: TNG Collaboration

- Bigger, higher resolution simulations are needed
 - Time consuming
 - Different modules for each stage
 - Many complex equations

Gravity Solver

Speeding up cosmological simulations with machine learning

Hydrodynamics

Cooling/heating

Grackle

Chemistry and cooling library

- Chemistry and cooling library
- Initial values for T, ρ_i

- Chemistry and cooling library
- Initial values for T, ρ_i
- Update *T* at each iteration

- Chemistry and cooling library
- Initial values for T, ρ_i
- Update T at each iteration
- Update densities through rate equations:

$$\frac{\partial n_i}{\partial t} = \sum_{j} \sum_{l} k_{jl}(T) n_j n_l$$

- Chemistry and cooling library
- Initial values for T, ρ_i
- Update *T* at each iteration
- Update densities through rate equations:

$$\frac{\partial n_i}{\partial t} = \sum_{j} \sum_{l} k_{jl}(T) n_j n_l + \sum_{j} I_j$$

- Chemistry and cooling library
- Initial values for T, ρ_i
- Update *T* at each iteration
- Update densities through rate equations:

$$\frac{\partial n_i}{\partial t} = \sum_{j} \sum_{l} k_{jl}(T) n_j n_l + \sum_{j} I_j$$

- Chemistry and cooling library
- Initial values for T, ρ_i
- Update *T* at each iteration
- Update densities through rate equations:

$$\frac{\partial n_i}{\partial t} = \sum_j \sum_l k_{jl} (T) n_j n_l + \sum_j I_j n_l$$

Time Consuming!

- Chemistry and cooling library
- Initial values for T, ρ_i
- Update *T* at each iteration
- Update densities through rate equations:

$$\frac{\partial n_i}{\partial t} = \sum_j \sum_l k_{jl} (T) n_j n_l + \sum_j I_j n_l$$

Time Consuming!

- Chemistry and cooling library
- Initial values for T, ρ_i
- Update *T* at each iteration
- Update densities through rate equations:

$$\frac{\partial n_i}{\partial t} = \sum_j \sum_l k_{jl} (T) n_j n_l + \sum_j I_j n_l$$

Time Consuming!

- Chemistry and cooling library
- Initial values for T, ρ_i
- Update *T* at each iteration
- Update densities through rate equations:

$$\frac{\partial n_i}{\partial t} = \sum_j \sum_l k_{jl} (T) n_j n_l + \sum_j I_j n_l$$

Time Consuming!

Speeding up cosmological simulations with machine learning

• Simple architecture

- Chemistry and cooling library
- Initial values for T, ρ_i
- Update T at each iteration
- Update densities through rate equations:

$$\frac{\partial n_i}{\partial t} = \sum_j \sum_l k_{jl} (T) n_j n_l + \sum_j I_j n_l$$

Time Consuming!

- Simple architecture
- Train with data from Grackle

 10^{8} Temperature [log₁₀ (K)] 10^{7} 10^{6} 10^{5} 10^{4}

Sample: $\rho_{HI,i}$ $\rho_{HII,i}$ dt_i

Temperature $[\log_{10} (K)]$ 10^{7} 10^{6} 10^{5} 10^{4}

Sample: $\rho_{HI,i}$ $\rho_{HII,i}$ dt_i

Temperature $[\log_{10} (K)]$ 107 10^{6} 10^{5} 10^{4}

 10^{8}

Speeding up cosmological simulations with machine learning

Trained Neural Network

	dt_i		10 ⁸
$ \begin{array}{ccc} T_0 & T_0 \\ \rho_{HI_0} & \rho_{HI_0} \\ \rho_{HII_0} & \rho_{HII_0} \end{array} $		T_0 ρ_{HI_0} ρ_{HII_0}	Temperature $\left[\log_{10} (K) \right]_{00}$
			10 ⁴ 10 ⁻

• Enforcing physical constraints at training phase

- Enforcing physical constraints at training phase
- Increasing the number of species: ρ_{H_2} , ρ_{He} , . . .

- Enforcing physical constraints at training phase
- Increasing the number of species: ρ_{H_2} , ρ_{He} , ...
- Adding radiation effects like UV background

Conclusion

Conclusion

Neural networks may offer a promising approach to reducing computational bottlenecks in cosmological simulations, even with relatively simple architectures.

