Testing the Equivalence Principle with the Distortion of Time

Swiss Cosmology Days 2025 ETH Zurich, June 6th, 2025

Sveva Castello

Density fluctuation

MATTER FIELD

GRAVITATIONAL POTENTIALS

Spatial component

Sveva Castello

Velocity

Density fluctuation

MATTER FIELD

GRAVITATIONAL POTENTIALS

Spatial component

Sveva Castello

Velocity

Y

Time component

Density fluctuation

MATTER FIELD

GRAVITATIONAL **POTENTIALS**

Spatial component

Sveva Castello

Velocity

Relations in GR with standard CDM

Density fluctuation

MATTER FIELD

GRAVITATIONAL **POTENTIALS**

Spatial component

Sveva Castello

Velocity

Relations in GR with standard CDM

Density fluctuation

Spatial component

Sveva Castello

Velocity

Relations in GR with standard CDM

Density fluctuation

Spatial component

Sveva Castello

Velocity

Continuity

Relations in GR with standard CDM

Time component

Density fluctuation

Spatial component

Sveva Castello

Continuity

Velocity

Relations in GR with standard CDM

Euler (Weak Equivalence Principle)

Υ

Time component

Density fluctuation

Spatial component

Sveva Castello

Time component

Velocity

Galaxy clustering

Fluctuations in galaxy number counts

 $\Delta(z,\mathbf{n}) = b \delta_m - \frac{1}{\mathcal{H}} \partial_r (\mathbf{V} \cdot \mathbf{n})$

Matter density x galaxy bias

Redshift-space distortions (RSD)

Sveva Castello

Galaxy clustering

Fluctuations in galaxy number counts

 $\Delta(z,\mathbf{n}) = b \delta_m - \frac{1}{\mathcal{H}} \partial_r (\mathbf{V} \cdot \mathbf{n})$

Matter density x galaxy bias

Redshift-space distortions (RSD)

Two-point correlation function

 $\xi \equiv \langle \Delta(z, \mathbf{n}) \Delta(z', \mathbf{n}') \rangle$

Sveva Castello

Galaxy clustering

Fluctuations in galaxy number counts

 $\Delta(z,\mathbf{n}) = b \delta_m - \frac{1}{\mathcal{H}} \partial_r (\mathbf{V} \cdot \mathbf{n})$

Matter density x galaxy bias

Redshift-space distortions (RSD)

Two-point correlation function

 $\xi \equiv \langle \Delta(z, \mathbf{n}) \Delta(z', \mathbf{n}') \rangle$

6

 \bigcirc

Sveva Castello

Gravity modifications

Sveva Castello

SC, Grimm and Bonvin (2022) Bonvin & Pogosian (2022) SC, Wang, Dam, Bonvin, Pogosian (2024)

Gravity modifications

Sveva Castello

SC, Grimm and Bonvin (2022) Bonvin & Pogosian (2022) SC, Wang, Dam, Bonvin, Pogosian (2024)

Breaking of the WEP by DM

Gravity modifications

CAN WE DISTINGUISH BETWEEN THE TWO?

Sveva Castello

SC, Grimm and Bonvin (2022) Bonvin & Pogosian (2022) SC, Wang, Dam, Bonvin, Pogosian (2024)

Breaking of the WEP by DM

Gravity modifications

CAN WE DISTINGUISH BETWEEN THE TWO?

<u>Generalised Brans-Dicke</u> Universal coupling

Sveva Castello

SC, Grimm and Bonvin (2022) Bonvin & Pogosian (2022) SC, Wang, Dam, Bonvin, Pogosian (2024)

Breaking of the WEP by DM

Coupled quintessence DM-only coupling

Forecasts for SKA2

Fit with both models (galaxy clustering + CMB + weak lensing)

SC, Wang, Dam, Bonvin, Pogosian (2024)

Generate mock data with one type of modification (e.g. $\beta_1 = 0$, $\beta_2 = 1$)

Forecasts for SKA2

Sveva Castello

SC, Wang, Dam, Bonvin, Pogosian (2024)

- Generate mock data with one type of modification (e.g. $\beta_1 = 0$, $\beta_2 = 1$)
- Fit with both models (galaxy clustering + CMB + weak lensing)

Deus ex machina: gravitational redshift

Sveva Castello

SC, Grimm and Bonvin (2022)Bonvin & Pogosian (2022)SC, Wang, Dam, Bonvin, Pogosian (2024)

Deus ex machina: gravitational redshift

Gravity modifications

Sveva Castello

SC, Grimm and Bonvin (2022)Bonvin & Pogosian (2022)SC, Wang, Dam, Bonvin, Pogosian (2024)

Breaking of the WEP by DM

Forecasts for SKA2

Sveva Castello

SC, Wang, Dam, Bonvin, Pogosian (2024)

Generate mock data with one type of modification (e.g. $\beta_1 = 0$, $\beta_2 = 1$)

Fit with both models (galaxy clustering + CMB + weak lensing)

Forecasts for SKA2

Fit with both models (galaxy clustering + CMB + weak lensing)

Sveva Castello

SC, Wang, Dam, Bonvin, Pogosian (2024)

- Generate mock data with one type of modification (e.g. $\beta_1 = 0$, $\beta_2 = 1$)

Directly measurable null test

Sveva Castello

SC, Zheng, Bonvin, Amendola (2025)

Directly measurable null test

Sveva Castello

SC, Zheng, Bonvin, Amendola (2025)

= 1 WEP valid

Directly measurable null test

Sveva Castello

SC, Zheng, Bonvin, Amendola (2025)

- WEP valid

Directly measurable null test

Sveva Castello

SC, Zheng, Bonvin, Amendola (2025)

- WEP valid
- WEP broken $\neq 1$

No assumptions on

• Primordial power spectrum shape Background cosmological expansion • Time dependence of μ, Θ, Γ • Galaxy bias

Take-home message

Happy to chat live or at <u>sveva.castello@unige.ch</u> :)

Sveva Castello

Gravitational redshift is very exciting!
Key probe of the equivalence principle
Necessary to distinguish between modified gravity and non-standard dark matter

Enea's talk: venturing to cluster scales

Subscribe to our YouTube channel Cosmic Blueshift!

We post video abstracts and outreach videos, feedback is welcome!

Sveva Castello

Sveva Castello

Additional slides

MATTER FIELD

Modified Poisson $k^2 \Psi = -4\pi G a^2 \bar{\rho} \,\delta \,\mu(k,z)$

GRAVITATIONAL **POTENTIALS**

Sveva Castello

Continuity $\delta' + \frac{k}{\mathcal{H}}V - 3\Phi' = 0$

> What happens if DM violates the WEP?

$$V'_{\rm DM} + V_{\rm DM} - \frac{k}{\mathscr{H}} \Psi = 1$$

SC, Grimm and Bonvin (2022)

Φ

V

 $\underline{} = i$

Gravity modifications

SC, Wang, Dam, Bonvin, Pogosian (2024)

Sveva Castello

SC, Grimm and Bonvin (2022) Bonvin & Pogosian (2022)

Breaking of the WEP by DM

Two-point correlation function

Extract information through correlations:

$$\xi \equiv \left< \Delta(\mathbf{n}, z) \Delta(\mathbf{n}', z') \right>$$

 $\begin{array}{l} \longrightarrow & \text{Expansion in Legendre polynomials:} \\ \text{With } \Delta = \delta + \text{RSD}, & \overset{\text{Kaiser (1987)}}{\text{Hamilton (1992)}} \\ \xi = C_0(z, d) P_0(\cos \beta) & \text{Monopole} \\ + C_2(z, d) P_2(\cos \beta) & \text{Quadrupole} \\ + C_4(z, d) P_4(\cos \beta) & \text{Hexadecapole} \\ \end{array}$

Sveva Castello

Credits: M.Blanton, SDSS

Relation with gravity modifications

 $C_0(z,d) = \tilde{b}^2(z) + \frac{2}{3}\tilde{b}(z)$ <u>Monopole</u>

 $C_2(z,d) = - \left| \frac{4}{3} \tilde{f}(z) \tilde{b}(z) + \right|$ Quadrupole

<u>Hexadecapole</u>

 $C_4(z,d) = \frac{8}{25}\tilde{f}^2(z)\,\mu_4(z_*,d)$

 $\tilde{f}(z) = f(z)\sigma_8(z)$ and $\tilde{b}(z) = b(z)\sigma_8(z)$

Sveva Castello

$$\tilde{f}(z) + \frac{1}{5}\tilde{f}^2(z) \bigg] \mu_0(z_*, d)$$

$$\left[-\frac{4}{7}\tilde{f}^{2}(z)\right]\mu_{2}(z_{*},d)$$

constrained by CMB

$$\Delta(\mathbf{n},z) = b \delta_m - \frac{1}{\mathcal{H}} \partial_r (\mathbf{V} \cdot \mathbf{n})$$

Gravitational lensing

$$+ (5s - 2) \int_{0}^{r} dr' \frac{r - r'}{2rr'} \Delta_{\Omega}(\Phi + \Psi) \qquad \left\{ \begin{array}{l} \text{Subdominant} \\ + \left(\frac{5s - 2}{r \mathcal{H}} - \frac{\dot{\mathcal{H}}}{\mathcal{H}^{2}} - 5s + f^{\text{evol}} \right) \mathbf{V} \cdot \mathbf{n} + \mathbf{V} \cdot \mathbf{n} + \frac{1}{\mathcal{H}} \dot{\mathbf{V}} \cdot \mathbf{n} + \frac{1}{\mathcal{H}} \partial_{r} \Psi \\ + \frac{2 - 5s}{r} \int_{0}^{r} dr' (\Phi + \Psi) - (3 - f^{\text{evol}}) \mathcal{H} \nabla^{-2} (\nabla \mathbf{V}) + \Psi + (5s - 2) \Phi \\ + \frac{1}{\mathcal{H}} \dot{\Phi} + \left(\frac{\dot{\mathcal{H}}}{\mathcal{H}^{2}} + \frac{2 - 5s}{r \mathcal{H}} + 5s - f^{\text{evol}} \right) \left[\Psi + \int_{0}^{r} dr' (\dot{\Phi} + \dot{\Psi}) \right] \qquad \left\{ \begin{array}{c} \text{Subdom} \\ \text{Subdom} \end{array} \right\}$$

$$+ (5s - 2) \int_{0}^{r} dr' \frac{r - r'}{2rr'} \Delta_{\Omega}(\Phi + \Psi) \qquad \begin{cases} \text{Subdominant} \\ + \left(\frac{5s - 2}{r\mathcal{H}} - \frac{\dot{\mathcal{H}}}{\mathcal{H}^{2}} - 5s + f^{\text{evol}}\right) \mathbf{V} \cdot \mathbf{n} + \mathbf{V} \cdot \mathbf{n} + \frac{1}{\mathcal{H}} \dot{\mathbf{V}} \cdot \mathbf{n} + \frac{1}{\mathcal{H}} \partial_{r} \Psi \\ + \frac{2 - 5s}{r} \int_{0}^{r} dr' (\Phi + \Psi) - (3 - f^{\text{evol}}) \mathcal{H} \nabla^{-2} (\nabla \mathbf{V}) + \Psi + (5s - 2) \Phi \\ + \frac{1}{\mathcal{H}} \dot{\Phi} + \left(\frac{\dot{\mathcal{H}}}{\mathcal{H}^{2}} + \frac{2 - 5s}{r\mathcal{H}} + 5s - f^{\text{evol}}\right) \left[\Psi + \int_{0}^{r} dr' (\dot{\Phi} + \dot{\Psi})\right] \qquad \end{cases}$$
Subdom

Relativistic effects

$$+ (5s - 2) \int_{0}^{r} dr' \frac{r - r'}{2rr'} \Delta_{\Omega}(\Phi + \Psi) \qquad \begin{cases} \text{Subdominant} \\ + \left(\frac{5s - 2}{r\mathcal{H}} - \frac{\dot{\mathcal{H}}}{\mathcal{H}^{2}} - 5s + f^{\text{evol}}\right) \mathbf{V} \cdot \mathbf{n} + \mathbf{V} \cdot \mathbf{n} + \frac{1}{\mathcal{H}} \dot{\mathbf{V}} \cdot \mathbf{n} + \frac{1}{\mathcal{H}} \partial_{r} \Psi \\ + \frac{2 - 5s}{r} \int_{0}^{r} dr' (\Phi + \Psi) - (3 - f^{\text{evol}}) \mathcal{H} \nabla^{-2} (\nabla \mathbf{V}) + \Psi + (5s - 2) \Phi \\ + \frac{1}{\mathcal{H}} \dot{\Phi} + \left(\frac{\dot{\mathcal{H}}}{\mathcal{H}^{2}} + \frac{2 - 5s}{r\mathcal{H}} + 5s - f^{\text{evol}}\right) \left[\Psi + \int_{0}^{r} dr' (\dot{\Phi} + \dot{\Psi})\right] \qquad \end{cases}$$
Subdom

$$+ (5s - 2) \int_{0}^{r} dr' \frac{r - r'}{2rr'} \Delta_{\Omega}(\Phi + \Psi) \qquad \left\{ \begin{array}{l} \text{Subdominant} \\ + \left(\frac{5s - 2}{r\mathcal{H}} - \frac{\dot{\mathcal{H}}}{\mathcal{H}^{2}} - 5s + f^{\text{evol}} \right) \mathbf{V} \cdot \mathbf{n} + \mathbf{V} \cdot \mathbf{n} + \frac{1}{\mathcal{H}} \dot{\mathbf{V}} \cdot \mathbf{n} + \frac{1}{\mathcal{H}} \partial_{r} \Psi \\ + \frac{2 - 5s}{r} \int_{0}^{r} dr' (\Phi + \Psi) - (3 - f^{\text{evol}}) \mathcal{H} \nabla^{-2} (\nabla \mathbf{V}) + \Psi + (5s - 2) \Phi \\ + \frac{1}{\mathcal{H}} \dot{\Phi} + \left(\frac{\dot{\mathcal{H}}}{\mathcal{H}^{2}} + \frac{2 - 5s}{r\mathcal{H}} + 5s - f^{\text{evol}} \right) \left[\Psi + \int_{0}^{r} dr' (\dot{\Phi} + \dot{\Psi}) \right] \qquad \left\{ \begin{array}{c} \text{Subdom} \\ \text{Subdom} \end{array} \right\}$$

Sveva Castello

What we really observe

Yoo et al. (2010) Bonvin and Durrer (2011) Challinor and Lewis (2011) Jeong, Schmidt and Hirata (2012)

 $+ \left(\frac{5s - 2}{\mathcal{H}r} - \frac{\dot{\mathcal{H}}}{\mathcal{H}^2} + f^{\text{evol}} \right) \mathbf{V} \cdot \mathbf{n}$

Sveva Castello

What we really observe

Gravitational redshift

 $\Delta(\mathbf{n},z) = b \,\delta_m - \frac{1}{\mathscr{H}} \partial_r (\mathbf{V} \cdot \mathbf{n}) + \frac{1}{\mathscr{H}} \partial_r \Psi + \frac{1}{\mathscr{H}} \dot{\mathbf{V}} \cdot \mathbf{n} + \mathbf{V} \cdot \mathbf{n}$

Extracting the signal from observations

Relativistic effects break the symmetry of ξ

$$C_{1}(z,d) = \frac{\mathscr{H}}{\mathscr{H}_{0}} \nu_{1}(d,z_{*}) \left[5\tilde{f} \left(\tilde{b}_{B}s_{F} - \tilde{b}_{F}s_{B} \right) \left(1 - \frac{1}{2} - 3\tilde{f}^{2}\Delta s \left(1 - \frac{1}{r\mathscr{H}} \right) + \tilde{f}\Delta \tilde{b} \left(\frac{2}{r\mathscr{H}} + \frac{\dot{\mathscr{H}}}{\mathscr{H}^{2}} \right) \right) \right]$$
$$+ \Delta \tilde{b} \left(\Theta \quad \tilde{f} - \frac{3}{2} \frac{\Omega_{m,0}}{a} \frac{\mathscr{H}_{0}^{2}}{\mathscr{H}^{2}} \Gamma \mu \sigma_{8} \right) \left[-\frac{2}{5} \frac{2}{5} \left(\Theta - \tilde{f} - \frac{3}{2} \frac{\Omega_{m,0}}{a} \frac{\mathscr{H}_{0}^{2}}{\mathscr{H}^{2}} \right) \right]$$

Compare $\mu(\Gamma + 1)$ term in the evolution equation

Sveva Castello

Symmetry breaking by gravitational redshift

Sveva Castello

Reproduced from Bonvin, Hui and Gaztañaga (2014)

Survey specifications

 σ_{μ_0} (restricted to WEP va $\sigma_{\mu_0+\Gamma_0}$ (no assumption on

DESI (Bright Galaxy Sample):

- 10 million galaxies up to z=0.5.
- Galaxy bias: $b_{BGS}(z) = b_0 \delta(0) / \delta(z)$. $b_0 = 1.34$ (fiducial value)

Fisher analysis:

- minimum separation $d_{\min} = 20 \,\mathrm{Mpc}/h$.
- include shot noise, cosmic variance, cross-correlations between different multipoles

Sveva Castello

	SDSS-IV	DESI	SKA2
alidity)	0.21	0.02	0.004
WEP)	6.05	0.42	0.068

SKA, phase 2: • ~1 billion galaxies up to z=2.0. • Galaxy bias: $b_{SKA}(z) = b_1 \exp(b_2 z)$. $b_1 = 0.554$, $b_2 = 0.783$ (fiducial value)

Deus ex machina: gravitational redshift

Sveva Castello

SC, Grimm and Bonvin (2022)

Precision with SDSS data

Sveva Castello

SC, Grimm and Bonvin (2022)

Modified gravity vs dark sector interactions

all constituents (μ, η)

Sveva Castello

Bonvin and Pogosian (2022)

Forecasts for SKA2

Fit with both models (galaxy clustering + CMB + weak lensing)

SC, Wang, Dam, Bonvin, Pogosian (2024)

Generate mock data with one type of modification (e.g. $\beta_1 = 0$, $\beta_2 = 1$)

