

U.S. Department of Energy Office of Science

DESI Part 2: Cosmological Implication of DR1&DR2 measurements

Rafaela Gsponer, EPFL

On behalf of the DESI Collaboration

Swiss Cosmology Days 2025, ETH Zurich

U.S. Department of Energy Office of Science

FLRW:
$$ds^2=a(au)^2[-(1+2\Psi)d au^2+(1-2\Phi)\delta_{ij}dx^idx^j]$$

At late times:

$$\left. egin{aligned} &k^2\Psi = -4\pi Ga^2\mu(a,k)\Sigma_i
ho_i\Delta_i\ &k^2(\Phi+\Psi) = -8\pi Ga^2\Sigma(a,k)\Sigma_i
ho_i\Delta_i \end{aligned}
ight\} ext{ In GR: } \mu(a,k) = \Sigma(a,k) = 1 \ \end{aligned}$$

Choose the following time dependence:

$$egin{aligned} \mu(a) &= 1 + rac{\Omega_\Lambda(a)}{\Omega_\Lambda} \mu_0 \ \Sigma(a) &= 1 + rac{\Omega_\Lambda(a)}{\Omega_\Lambda} \Sigma_0 \end{aligned}$$

U.S. Department of Energy Office of Science

Area where we don't trust our theory predictions 4 $DESI + BBN + n_{s10}$ $\mathbf{2}$ 0 -2 Σ_0 GR

 $k^2 \Psi = -4\pi G a^2 \mu(a,k) \Sigma_i \rho_i \Delta_i$

Describes the motion of massive particles in a gravitational field μ_0 \rightarrow can be directly constrained by DESI

$$\mu_0=0.11^{+0.45}_{-0.54}$$

U.S. Department of Energy Office of Science

$$k^2(\Phi+\Psi)=-8\pi Ga^2\Sigma(a,k)\Sigma_i
ho_i\Delta_i$$

Describes the motion of massless particles in a gravitational field \rightarrow can be constrained by lensing and ISW $\stackrel{\odot}{\preccurlyeq}$

$$\Sigma_0 = 0.25^{+0.12}_{-0.18}$$

Slight departure from GR related to CMB lensing anomaly

U.S. Department of Energy Office of Science

Area where we don't trust our theory predictions

6

U.S. Department of Energy Office of Science

bf: DESI + CMB + DESY5

U.S. Department of Energy Office of Science

We model a varying Dark Energy equation of state through:

$$w(a) = w_0 + w_a(1-a)$$

U.S. Department of Energy Office of Science

We model a varying Dark Energy equation of state through: $w(a) = w_0 + w_a(1-a)$

$$w_0 = -0.45^{+0.34}_{-0.21}$$
 $w_a = -1.79^{+0.48}_{-1.00}$
DR1: DESI + CMB \Rightarrow 2.6 σ

U.S. Department of Energy Office of Science

We model a varying Dark Energy equation of state through: $w(a) = w_0 + w_a(1-a)$

$$w_0 = -0.45^{+0.34}_{-0.21}$$
 $w_a = -1.79^{+0.48}_{-1.00}$
DR1: DESI + CMB \Rightarrow 2.6 σ
 $w_0 = -0.42 \pm 0.21$ $w_a = -1.75 \pm 0.58$

DR2: DESI + CMB \Rightarrow 3.1 σ

U.S. Department of Energy Office of Science

In ΛCDM :

 \rightarrow DESI BAO predicts slightly lower values of $\Omega_{_{\rm m}}$ than Planck \rightarrow SN data sets predict higher values of $\Omega_{_{\rm m}}$ than Planck

U.S. Department of Energy Office of Science

In ΛCDM :

 \rightarrow DESI BAO predicts slightly lower values

of $\Omega_{\rm m}$ than Planck \rightarrow SN data sets predict higher values of $\Omega_{\rm m}$

than Planck

In w0waCDM:

 \rightarrow Prediction of $\Omega_{_{\rm m}}$ from DESI BAO consistent with SNe Ia data sets

U.S. Department of Energy Office of Science

2.5σ

3.5σ

3.9σ

U.S. Department of Energy Office of Science

Combining DESI + CMB + SN: $w_0 = -0.838 \pm 0.055, \quad w_a = -0.62^{+0.22}_{-0.19}$ **DR2:** DESI + CMB + Pantheon + \Rightarrow 2.8σ $w_0 = -0.667 \pm 0.088, \quad w_a = -1.09^{+0.31}_{-0.27}$ **DR1: DESI** + **CMB** + **Union3** \Rightarrow 3.8σ $w_0 = -0.752 \pm 0.057, \hspace{1em} w_a = -0.86^{+0.23}_{-0.20},$ DR1: DESI + CMB + DESY5 \Rightarrow 4.2σ

Extended DE study

U.S. Department of Energy Office of Science

Testing **different parameterisation** of either w(z) or $\rho_{DE}(z)$:

 \rightarrow alternative 2 parameter models with different functional forms

Non-parametric way of determining w(z) through **binning**:

 \rightarrow comparison of different redshift intervals without the assumption of a specific functional form

DARK ENERGY SPECTROSCOPIC INSTRUMENT

U.S. Department of Energy Office of Science

Conclusion:

- Full-shape MG constraints compatible with GR
 DR2 is fully consistent with DR1 with error bar smaller by almost ~2x
- DESI + CMB prefer dynamical DE at 3.1σ
- Including SN data strengthens this to 2.8σ 4.2σ

Thanks to our sponsors and 72 Participating Institutions!

APPENDIX

U.S. Department of Energy Office of Science

Redshifts for the BAO analysis

Tracer	DR1	DR2
BGS	300,043	1,188,526
LRG	2,138,627	4,468,483
ELG	2,432,072	6,534,844
QSO	1,223,391	2,062,839
Total	6,094,133	14,254,692

c **Consistency with SDSS**

Level of Significance for the different data sets

U.S. Department of Energy Office of Science

Datasets	$\Delta\chi^2_{ m MAP}$	Significance	$\Delta({ m DIC})$
DESI	-4.7	1.7σ	-0.8
$\mathrm{DESI+}(heta_*,\omega_\mathrm{b},\omega_\mathrm{bc})_\mathrm{CMB}$	-8.0	2.4σ	-4.4
DESI+CMB (no lensing)	-9.7	2.7σ	-5.9
DESI+CMB	-12.5	3.1σ	-8.7
DESI+Pantheon+	-4.9	1.7σ	-0.7
DESI+Union3	-10.1	2.7σ	-6.0
DESI+DESY5	-13.6	3.3σ	-9.3
DESI+DESY3 $(3 \times 2 pt)$	-7.3	2.2σ	-2.8
DESI+DESY3 $(3 \times 2pt)$ +DESY5	-13.8	3.3σ	-9.1
DESI+CMB+Pantheon+	-10.7	2.8σ	-6.8
DESI+CMB+Union3	-17.4	3.8σ	-13.5
DESI+CMB+DESY5	-21.0	4.2σ	-17.2

DR2:

TABLE VI. Summary of the difference in the effective χ^2_{MAP} value (defined as twice the negative log posterior at the maximum posterior point) for the best-fit $w_0 w_a \text{CDM}$ model relative to the best ΛCDM model with $w_0 = -1$, $w_a = 0$, for fits to different combinations of datasets as indicated. The third column lists the corresponding (frequentist) significance levels given 2 extra free parameters, and the final column shows the results for $\Delta(\text{DIC}) = \text{DIC}_{w_0 w_a \text{CDM}} - \text{DIC}_{\Lambda \text{CDM}}$.

Robustness of the Dark Energy results

U.S. Department of Energy Office of Science

Different level of CMB information: \rightarrow CMB-derived priors (late-time dark energy independent) \rightarrow full CMB information (with or without lensing) \rightarrow tighten constraints on w0wa through fixing Ω_m

DESY5 calibration:

→ remove samples for z > 0.1

 \rightarrow best fit still lies in the lower quadrant

Replacing the CMB with DESY3: \rightarrow constraints on w0wa **purely** depending on low-z probes

Robustness of the Dark Energy results

U.S. Department of Energy Office of Science

Results are robust to different CMB likelihoods

Robustness of the Dark Energy results

U.S. Department of Energy Office of Science

For supernovae at z > 0.1, which partially overlap the redshift range of DESI, the Λ CDM model that best fits the DESI data is also a good fit to the SNe data (blue line)

Evolving DE: Adding Full-shape to the mix

U.S. Department of Energy Office of Science

Area where we don't trust our theory predictions

