DESI Part 1: Overview of the DESI survey

U.S. Department of Energy Office of Science

Credit : DESI collaboration

Antoine Rocher

Postdoc Ecole Polytechnique Fédérale de Lausanne

On behalf of the DESI collaboration

Swiss Cosmo days – 2025 June 5th - Zurich

U.S. Department of Energy Office of Science

Thanks to our sponsors and 69 Participating Institutions!

U.S. Department of Energy Office of Science

Dark Energy Spectroscopic Instrument

- DESI is a state-of-the-art spectroscopic instrument installed at the Mayall 4-meter telescope at Kitt Peak National Observatory.
- First Stage-4 spectroscopic survey on sky
 - measures the 3D distributions of galaxies
 - -1/3 sky 14000 deg²
- 40M redshifts at the end of the survey (5 years)
 x13 previous spectroscopic surveys

Dark Energy Spectroscopic Instrument

Dark matter 27%

- Expansion history of the Universe => Constraint Dark Energy with BAO
- How does the structure form? => Test of gravity (GR)
- Primordial physics, inflation (f_{nl})
- Neutrino mass, dark matter models... + many other science cases

Visible matter

5%

CDM

68% Dark energy

Map the Universe in 3D to constrain the cosmological model

Credit : DESI collaboration/Claire Lamman

U.S. Department of Energy Office of Science

DESI is a state-of-the-art instrument installed at the Mayall 4-meter telescope at Kitt Peak National Observatory.

U.S. Department of Energy Office of Science

Focal plane is populated with 5000 robotics fibers

DESI is a state-of-the-art instrument installed at the Mayall 4-meter telescope at Kitt Peak National Observatory.

U.S. Department of Energy Office of Science

DESI is a state-of-the-art instrument installed at the Mayall 4-meter telescope at Kitt Peak National Observatory.

These fibers allow DESI to map an area of the sky larger than 30 full moons—simultaneously.

U.S. Department of Energy Office of Science

These fibers allow DESI to map an area of the sky larger than 30 full moons—simultaneously.

U.S. Department of Energy Office of Science

DARK ENERGY SPECTROSCOPIC

INSTRUMENT

U.S. Department of Energy Office of Science

These fibers allow DESI to map an larger than 30 full moons—simulta

S⁺S

9000

Full Moon (to scale)

Reconfiguration time < 2min

~20 min between 2 exposures

Wavelength (Angstroms)

The DESI main survey

4 different tracers to probe the Universe z < 3.5

12

The DESI main survey

4 different tracers to probe the Universe z < 3.5

DESI Legacy photometric surveys

U.S. Department of Energy Office of Science

DESI Legacy Imaging Surveys: <u>https://legacysurvey.org/dr9</u> Interactive Sky Viewer: <u>https://legacysurvey.org/viewer</u>

U.S. Department of Energy Office of Science

Legacy surveys grz bands:

- BASS+MzLS
- DECaLS
- DES

+ W1/W2 infrared bands from unWISE

Interactive Sky Viewer: https://legacysurvey.org/viewer

DES

1.0

0.8

0.4

0.2

0.0

4000

6000

Throughput 0.6

DARK ENERGY SPECTROSCOPIC INSTRUMENT

U.S. Department of Energy Office of Science

DESI Target Selection

Interactive Sky Viewer: https://legacysurvey.org/viewer

DESI Timeline

U.S. Department of Energy Office of Science

DESI DR1 contains the most detailed 3D map of the universe ever, spanning 12 billion years of cosmic time.

U.S. Department of Energy Office of Science

Main Survey :

- 13.1M galaxies
- 1.6M quasars
- 4M stars
- + Survey Validation (1.7M objects) Total: 20.4M redshifts

Redshifts for th	e BAO analysis
------------------	----------------

Tracer	DR1
BGS	300,043
LRG	2,138,627
ELG	2,432,072
QSO	1,223,391
Total	6,094,133

https://data.desi.lbl.gov/doc/releases/dr1

DESI DR2 will contain two-thirds of the 5-year survey data and ~50M redshifts, two times more than DR1!

U.S. Department of Energy Office of Science

Main Survey (internal release):

- 31M galaxies
- 2.8M quasars
- 12.3M stars
- + Survey Validation (1.7M objects) Total: 46.1M redshifts

Redshifts for the BAO analysis				
Tracer	DR1	DR2		
BGS	300,043	1,188,526		
LRG	2,138,627	4,468,483		
ELG	2,432,072	6,534,844		
QSO	1,223,391	2,062,839		
Total	6,094,133	14,254,692		

DESI 2024 II: Sample Definitions, Characteristics, and Two-point Clustering Statistics

arxiv: 2411.12020v1

Flash BAO results from DESI DR1

U.S. Department of Energy Office of Science

Credit : DESI collaboration

Hint for Time dependent dark energy!

Flash BAO results from DESI DR1

U.S. Department of Energy Office of Science

-

Main observationnal systematic sources

Chaussidon et al 2022

PSF Depth rmag.

NGC

 10^{-1}

 θ [deg]

Spectroscopic succes rate

ELG

LRG

QSO

BGS

 10^{1}

Y1 FA mocks

 $29 \ 10^{0}$

R.A. [deg]

75°

arxiv: 2411.12020v1

Pinon et al 2024

Main observationnal systematic sources

arxiv: 2411.12020v1

U.S. Department of Energy Office of Science

Chaussidon et al 2022 R.A. [deg] 45° 60°

Ref.	Topic	Section
[12]	DESI LSS catalogs	Sections 2.3, 4, 5.1 and 8
[14]	Catalog-level blinding	Section 2.4
[15]	Catalog-level blinding method for $f_{\rm NL}$ measurements	Section 2.4
[22]	Incompleteness due to fiber assignment	Section 5
[23]	Removing scales affected by fiber assignment incompleteness	Section 5
[13]	Alternative realizations of DESI fiber assignment	Section 5.2
[16]	Improved Galactic extinction maps from DESI Observations of stars	Section 6
[17]	Forward modelling imaging systematics for DESI LRGs	Section 6
[18]	Correcting for imaging systematics in DESI ELGs	Section 6
[20]	DESI spectroscopic systematics	Section 7
[21]	Correcting for spectroscopic systematics in DESI ELGs	Section 7
[31]	Comparison between analytical and mock-based covariance matrices	Section 10.2
[29]	Analytic covariance matrices for correlation functions	Section 10.2
[30]	Analytic covariance matrices for power spectra	Section 10.2
[24]	Simulations of DESI LSS	Section 11

Table 1. The list of the papers supporting this paper and the corresponding sections where theirresults are discussed.

Pinon et al 2024

DESI survey status

U.S. Department of Energy Office of Science

DESI Extension

U.S. Department of Energy Office of Science

5 => 8 year survey (until 2029)

Increase sky area 14'000 => 17'000 deg² Bigger Overlap with LSST

Expected ~60M extragalactic redshifts

 $\frac{3M}{2} 3.6M \text{ Quasars (QSOs)} \\ 0.8 < z < 2.6 \\ + \text{Ly-}\alpha \qquad z > 2.1 \\ \frac{17M}{21M \text{ Emission line}} \\ \text{galaxies (ELGs)} \\ 0.6 < z < 1.6 \\ \frac{8M}{2} 10M \text{ Luminous red} \\ \text{galaxies (LRGs)} \\ 0.4 < z < 1.1 \\ \end{array}$

13.5M 16M Bright galaxies 0<z<0.5

+ ~5M New sample of LRGs
Luminous Galaxies Extension
(LGE)
Increased density (+50%)
0.4<z<1.1</pre>

U.S. Department of Energy Office of Science

Thank you !

Stay tune for Rafaela presentation on cosmological results from DESI

Credit : DESI collaboration

DESI Imaging systematics: QSO case

Chaussidon et al. 2022

34

Spectroscopic systematics: ELG case

+ lots of other features...

=> We observed only small trends according to spectroscopic features

Trends with spectroscopy are minors and have $< 0.2\sigma$ impact on clustering measurements

Yu et al. 2024

Krolewski et al. 2024

Fiber assignment (FA)

Fiber assignment (FA)

Fiber assignment: Pairwise-Inverse-Probability (PIP) weighting scheme

Fiber patrol radius

Bianchi & Percival 2017 Mohammad et al. 2020

Statistical estimation to observe a galaxy pair:

Number of FA runs

 $w_{ij} = \frac{1}{1}$ Number of time the galaxy pair has been observed

= 0 for galaxy inside the same patrol radius

Fiber assignment: Pairwise-Inverse-Probability (PIP) weighting scheme

Statistical estimation to observe a galaxy pair:

 $w_{ij} = \frac{\text{Number of FA runs}}{\text{Number of time the galaxy}}$ pair has been observed

= 0 for galaxy inside the same patrol radius

Fiber patrol radius

Angular up-weight (ANG)

$$\begin{split} w^{DD}_{\mathrm{ang}}\left(\theta\right) &= \frac{DD^{\mathrm{par}}(\theta)}{DD^{\mathrm{fib}}_{\mathrm{PIP}}(\theta)},\\ w^{DR}_{\mathrm{ang}}(\theta) &= \frac{DR^{\mathrm{par}}(\theta)}{DR^{\mathrm{fib}}_{\mathrm{IIP}}(\theta)}. \end{split}$$

The pairs DD and DR at a given separation angle θ are up-weighted

Fiber assignment: Impact on the 1% survey

