Fast Simulation of Post-Reionization Cosmological Neutral Hydrogen based on the Halo Model

Pascal Hitz ETHZ Cosmology Group[†]

Swiss Cosmology Days 2025, ETHZ 05.06.2025

[†] Alexandre Refregier, Pascale Berner, Devin Crichton, John Hennig

ETHzürich

Image Credit: SARAO, Heywood et al. (2022) / J.C. Muñoz-Mateos

Overview

- Fast and large volume simulations of neutral hydrogen (HI) distribution for postreionization ($z \le 6$) 21 cm intensity mapping experiments
 - Assumption: Most HI resides inside of dark matter halos
- Test instrument simulations and analysis pipelines to measure the HI emission

ETH zürich

PINOCCHIO: Dark Matter Halo Simulation

- Monaco et al. (2002, 2013), Taffoni et al. (2002), Munari et al. (2017)
- Lagrangian Perturbation Theory
- Collapsed points grouped into halos, hierarchical growth
- Catalogue of dark matter halos
- Much faster than N-body

Current Setting of DM Simulations

- 1 Gpc/h box size
- 6700³ simulation particles
- \geq 10 particles per halo $\leftrightarrow \geq$ 4.3 × 10⁹ M_{\odot}
- Lightcone settings:
 - − Frequency range: $700 800 \text{ MHz} \leftrightarrow \text{Redshift } 0.77 1.03$
 - Declinations between -15° and -35°
 - 40 box replications
- Ran on Piz Daint with MPI parallelization
 - 2400 nodes with 12 cores each
 - 150 TB RAM, 40'000 CPU h runtime

 $\rightarrow 2 - 3\%$ HI mass missing

Halo Model for Cosmological HI

ETH zürich

- More massive halos contain more HI
- But: Many more small halos than large ones
 → Important not to neglect small halos
- 2 3% loss over considered redshift range

5

Brightness Temperature Maps

HI Angular Power Spectrum

Data Availability

- Data documentation on our group website
 <u>https://cosmology.ethz.ch/research/software-lab/cosmological-neutral-hydrogen-simulation.html</u>
- Fast data transfer via Globus
 - ./snapshots: DM halo box snapshot catalogues at z = 0.8, 0.9 and 1
 - ./lightcone: DM halo past light cone catalogue from z = 0.77 1.03
 - ./skymaps: DM mass and HI mass / brightness temperature HEALPix maps

	File Manager				
FILE MANAGER	Collection	CosmoHI		Q	\times
	Path	1			
	select all \uparrow up one folder \bigcirc refresh list \bigtriangledown filter \bigotimes vi				view
<u>д</u> GROUPS	Refer to https://cosmology.ethz.ch/research/software-lab/cosmological- neutral-hydrogen-simulation.html for more information				
EL OWS	٦	NAME 🗸	LAST MODIFIED	SIZE	
, ÇÊÇÊ		lightcone	1/24/2025, 0	_	>
COMPUTE		parameters	3/19/2024, 0	3.33 KB	
TIMERS		pinocchio-4.2.dev1.tar.gz	1/24/2025, 0	19.49 MB	
©⊘© ↓↓↓ CONSOLE ∽		README.md	1/30/2025, 0	3.21 KB	
ඣ		skymaps	1/28/2025, 0	_	>
		Skymaps-1.0.0.tar.gz	2/6/2025, 08	14.52 KB	
LOGOUT		snapshots	1/28/2025, 1	_	>

Summary

- Simulation pipeline of HI distribution for intensity mapping
- Theoretical predictions of power spectrum
 - Halo Model in PyCosmo 2.2.0: pip installable and documented <u>https://cosmology.ethz.ch/research/software-lab/PyCosmo.html</u>
- Outlook:
 - Apply it to HIRAX, SKAO, MeerKAT, ...
 - Cross-correlations with other probes
 - Vary cosmology and astrophysics (HI-Halo mass relation)
 - Consider foregrounds, noise and RSD

Hitz et al. (2025) https://arxiv.org/abs/2410.01694

Backup Slides

HI Mass Loss

- More massive halos contain more HI
- But: Many more small halos than large ones
- → Important not to neglect small halos
- 2 3% loss over considered redshift range

ETH zürich

HI Power Spectrum

ETH zürich

PyCosmo HI Halo Model

• Fundamental assumption: All matter in the universe is arranged in halos of different sizes and masses

$$P_{\rm HI}(k) = P_{\rm 1h,HI}(k) + P_{\rm 2h,HI}(k)$$

$$\rightarrow P_{\rm 1h,HI} = \frac{1}{\bar{\rho}_{\rm HI}^2} \int dM \frac{dn(M,z)}{dM} M_{\rm HI}^2(M) |u_{\rm HI}(k|M)|^2$$

$$\rightarrow P_{\rm 2h,HI} = P_{\rm lin}(k) \left[\frac{1}{\bar{\rho}_{\rm HI}} \int dM \frac{dn(M,z)}{dM} M_{\rm HI}(M) b(M) |u_{\rm HI}(k|M)| \right]$$