

Karlsruhe Institute of Technology

Probabilistic Position Reconstruction in the XENONnT Experiment

Sebastian Vetter on behalf of the XENON Collaboration

sebastian.vetter@kit.edu

@xenonexperiment

🕻 🔄 xenonexperiment.org

£

XENONexperiment

KIT – The Research University in the Helmholtz Association

© @xenon_experiment www.kit.edu

The XENON Collaboration

XENON Collaboration Meeting March 2024 at Laboratori Nazionali del Gran Sasso (LNGS)

29 institutions 200+ scientists

XENON Experiments

XENON dark matter (& neutrino) observatory at Laboratori Nazionali del Gran Sasso (LNGS)

- Initial scintillation light: S1
- Proportional scintillation signal: S2
- Energy: S1 area, S2 area
- ✤ Z-position: drift time

- Initial scintillation light: S1
- Proportional scintillation signal: S2
- Energy: S1 area, S2 area
- Z-position: drift time
- ◆ Interaction type: S2/S1 ratio (ER/NR)

Sebastian Vetter

Signal and Background Rates (Example: CEvNS)

Signal rate (CEvNS):

- $R = \phi_{\nu} \cdot \sigma_{\nu} \cdot N_{Xe}$ ~600 recoils / (tonne x year)
- Energy dependent detection efficiency
- O(10) detected events

Signal and Background Rates (Example: CEvNS)

Signal rate (CEvNS):

- $R = \phi_{\nu} \cdot \sigma_{\nu} \cdot N_{Xe}$ $\sim 600 \text{ recoils / (tonne x year)}$
- Energy dependent detection efficiency
- O(10) detected events

Background rate:

- >10⁷ recoils / (tonne x year) from detector materials alone
- \rightarrow Tiny needle in a massive haystack

Signal and Background Rates (Example: CEvNS)

Signal rate (CEvNS):

- $R = \phi_{\nu} \cdot \sigma_{\nu} \cdot N_{Xe}$ ~600 recoils / (tonne x year)
- Energy dependent detection efficiency
- O(10) detected events

Background rate:

 >10⁷ recoils / (tonne x year) from detector materials alone

\rightarrow Tiny needle in a massive haystack

Great efforts on background reduction: O(10) detected events

Source	CEvNS	Background	Total	Observed
Count	2.1	5.4	7.5	6

XENON1T CEvNS Search: PRL 126, 091301 (2021)

Background radiation from detector materials

Self-shielding properties of Xe: Background short range

Background radiation from detector materials

Self-shielding properties of Xe: Background short range, WIMPs/neutrinos long range

Background radiation from detector materials

Self-shielding properties of Xe: Background short range, WIMPs/neutrinos long range

Define fiducial volume V_f with $P(BGD \in V_f) \ll 1$ and $P(v \in V_f) \approx P(v \in Xe)$

 χ^{v}

Default:

Photosensor output \rightarrow NN \rightarrow point in x-y plane

Probabilistic Position Reconstruction

Goal: Photosensor output \rightarrow NN \rightarrow PDF in x-y plane

Probabilistic Position Reconstruction

Goal: Photosensor output \rightarrow NN \rightarrow PDF in x-y plane

Motivation:

- Insight into the reasoning of the NN: What kind of event leads to large uncertainties?
- ✤ Identification of poorly reconstructed events
- ✤ Refinement of fiducial volume
- Propagation of position uncertainty into full event reconstruction chain

One-Hot Model

- Binned output space
- ✤ Trained as classifier
- Predicted value of bin
 = Probability of truth being in the
 - = Probability of truth being in this bin

One-Hot Model

- ✤ Binned output space
- ✤ Trained as classifier
- Predicted value of bin= Probability of truth being in this bin

Parameterized Model

- Output: Parameters of pre-defined PDF
- ✤ Amortized Variational Inference
- Trained on Likelihood of this PDF

One-Hot Model

Arbitrary PDF

Easy way to increase resolution: Reduction of bin width

Large number of parameters = Increased inference time & Increased training time & Increased risk of overfitting

Output not mathematically well-defined

One-Hot Model	Parameterized Model
Arbitrary PDF	Only pre-defined PDF
Easy way to increase resolution: Reduction of bin width	Static output for given PDF Increase in performance has to come from model architecture and training data
Large number of parameters = Increased inference time & Increased training time & Increased risk of overfitting	Only slightly more parameters than point-like prediction model
Output not mathematically well-defined	Output mathematically well-defined

One-Hot Model	Parameterized Model
Arbitrary PDF	Only pre-defined PDF
Easy way to increase resolution: Reduction of bin width	Static output for given PDF Increase in performance has to come from model architecture and training data
Large number of parameters = Increased inference time & Increased training time & Increased risk of overfitting	Only slightly more parameters than point-like prediction model
Output not mathematically well-defined	Output mathematically well-defined
Best suited if: - Training and inference time of no concern - Great amount of data available	Best suited if: - Underlying PDF known - Small model preferable - Interest in mathematical interpretation of output

Combination of both Models

- Train One-Hot model with extra fine binning
- Fit different pre-defined PDFs to One-Hot output

Combination of both Models

- Train One-Hot model with extra fine binning
- Fit different pre-defined PDFs to One-Hot output
- Skew-Gaussian (SG) model fits distribution best

Combination of both Models

Karlsruhe Institute of Technology

- Train One-Hot model with extra fine binning
- Fit different pre-defined PDFs to One-Hot output
- Skew-Gaussian (SG) model
 fits distribution best

O Truth

60

40

20

0

-20

-40

-60

-50

Υ [cm]

Sebastian Vetter

Resolution: Monte-Carlo vs Probabilistic Model

Sebastian Vetter

Resolution: Monte-Carlo vs Probabilistic Model

Resolution: Monte-Carlo vs Probabilistic Model

11 2024-06-26

Sebastian Vetter

- Predict position-PDFs of simulated events
- Draw areas containing n% of each PDF

- Draw areas containing n% of each PDF *
- Check whether MC truth lies inside area *
- If fraction of events with truth inside area = n_{c} * model estimates uncertainty correctly

Summary

- XENONnT experiment searches for rare events (Dark Matter, CEvNS, ...)
 - \rightarrow Requires accurate event reconstruction

 Probabilistic extensions of NNs allow for prediction of PDFs instead of points

 Probabilistic NN correctly estimates resolution of position reconstruction

Backup

15 2024-06-26

Sebastian Vetter