Scalable Particle Imaging with Neural Embeddings

François Drielsma (SLAC) NPML 2024, ETH Zurich

Neutrinos produced as different types

 Neutrino types are a superposition of mass states

Neutrino
sypes
$$\begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix}$$
 Mass states
Mixing matrix

 $E_{\rm v} = 1 \,{\rm GeV}$

Neutrinos produced as different types

- Neutrino types are a superposition of mass states
- Mass wavefunctions oscillate at different rate → mixture changes

Neutrino
types
$$\begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix}$$
 Mass
states
Mixing matrix

 $\sin^2 2\theta = 0.8,$

 $\Delta m^2 = 0.003 \,\mathrm{eV}^2.$

 $E_{\rm v} = 1 \,{\rm GeV}$

Neutrinos produced as different types

- Neutrino types are a superposition of mass states
- Mass wavefunctions oscillate at different rate → mixture changes

Neutrino
types
$$\begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix}$$
 Mass
states
Mixing matrix

 $\sin^2 2\theta = 0.8.$

 $\Delta m^2 = 0.003 \,\mathrm{eV^2},$

Need to measure Type + Energy

Particle Imaging Detectors Reconstruction

Particle Imaging Detectors Reconstruction

Liquid Argon Time Projection Chamber

LArTPC = main detector technology in use with high-intensity neutrino beams in the US:

- Precise tracking
- Detailed calorimetry
- Dense (1.4 g/cm³)
- Cheap (O(1) \$/kg)
- Scalable

Challenges in LArTPCs

Primary

In the beginning the LArTPC was created. This has made a lot of people very angry

and been widely regarded as a bad move.

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

12

Physics-Informed ML Reconstruction

What is relevant to pattern recognition in a detailed interaction image?

Physics-Informed ML Reconstruction

What is relevant to pattern recognition in a detailed interaction image?

1. Separate topologically distinguishable types of activity

UResNet (<u>UNet</u> + <u>ResNet</u> + <u>Sparse Conv.</u>) as the **backbone feature extractor**

What is relevant to pattern recognition in a detailed interaction image?

- 1. Separate topologically distinguishable types of activity
- 2. Identify **important points** (vertex, start points, end points)

Points of Interest

The Point Proposal Network (PPN) uses decoder features

- Three CCN layers to narrow ROI
- Last layer reconstructs:
 - Relative position to pixel center of active pixel
 - Point type
- Post-processing attention mask aggregates nearby points

PPN1

L. Dominé et al.

Decoder

Encoder

input

conv

What is relevant to pattern recognition in a detailed interaction image?

- 1. Separate topologically distinguishable types of activity
- 2. Identify **important points** (vertex, start points, end points)
- 3. Cluster individual particles (tracks and full showers)

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

Supervised Connected Component Clustering

Learn a smart version of DBSCAN (connected components)

Learn a smart version of DBSCAN (connected components)

Supervised Connected Component Clustering

CNN: mostly sensitive to local neighborhood of pixel, but...

- EM showers: photon mean free path in LAr = 18 cm (60 pixels in ICARUS)
- Interactions: π^0 , K^0 , Λ , neutrons

We now represent the set of fragments as a **set of nodes in a graph** where **edges represent correlations**

Node features:

- Centroid
- Covariance matrix
- Start point/direction
- ...

Edge features:

• Displacement vector

^{• . . .}

Graph Neural Network: develop features useful to node/edge classification

What is relevant to pattern recognition in a detailed interaction image?

- 1. Separate topologically distinguishable types of activity
- 2. Identify important points (vertex, start points, end points)
- 3. Cluster individual particles (tracks and full showers)
- 4. Cluster interactions, identify particle properties in context

Graph Neural Network: develop features useful to node/edge classification

Reconstruction in LArTPCs

End-to-end ML-based reconstruction chain

• Sparse CNN for pixel-level features, GrapPA for superstructure formation

SPINE "Network"

SPINE "Network"

Reconstruction Highlights at ICARUS

Excellent performance on a realistic BNB v + Cosmic sample in ICARUS (<u>NPML '23</u>)

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

• **BNB** v_u selections (J. Mueller, L. Kashur), see Dan's <u>talk</u> yesterday

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

- **BNB v**_u selections (J. Mueller, L. Kashur), see Dan's <u>talk</u> yesterday
- BNB/NuMI v_e selections (D. Koh, D. Carber), see Dae's <u>talk</u> yesterday

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

- **BNB v** selections (J. Mueller, L. Kashur), see Dan's <u>talk</u> yesterday
- BNB/NuMI v_e selections (D. Koh, D. Carber), see Dae's <u>talk</u> yesterday
- Michel electron reconstruction (Y. Jwa), see Yeon-Jae's talk today

SPINE "Network"

- **BNB v** selections (J. Mueller, L. Kashur), see Dan's <u>talk</u> yesterday
- **BNB/NuMI v** selections (D. Koh, D. Carber), see Dae's <u>talk</u> yesterday
- Michel electron reconstruction (Y. Jwa), see Yeon-Jae's <u>talk</u> today

Excellent work to port the chain to **SBND**:

- Early **BNB** v_u selection (B. Carslon, C. Fan), see Bear's <u>talk</u> today
- Michel electron reconstruction (N. Oza)

SPINE "Network"

LArTPC Technologies

Wire planes \rightarrow Set of 2D projections (SBND, ICARUS, µBooNE, DUNE-FD)

LArTPC Technologies

Pixel plane → Single natively 3D image (DUNE-ND, 2x2 prototype)

Credit: J. Micallef

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

Training sample generated using the **DeepLearnPhysics** generator

- 1-3 particle bombs (multi-particle vertex, aka MPV)
- 1-5 single particles (multi-particle rain, aka MPR)

Training sample generated using the **DeepLearnPhysics** generator

- 1-3 particle bombs (multi-particle vertex, aka MPV)
- 1-5 single particles (multi-particle rain, aka MPR)

Training sample generated using the **DeepLearnPhysics** generator

- 1-3 particle bombs (multi-particle vertex, aka MPV)
- 1-5 single particles (multi-particle rain, aka MPR)

Semantic Segmentation

Separate topologically different types of activity

• Tracks, Showers, delta rays, Michel electrons, low energy blips

Separate **topologically different** types of activity

Tracks, Showers, delta rays, Michel electrons, low energy blips

Separate **topologically different** types of activity

Tracks, Showers, delta rays, Michel electrons, low energy blips

Points of Interest

Identify start points of showers and end points of tracks

• Tracks, Showers, delta rays, Michel electrons, low energy blips

Points of Interest

Identify start points of showers and end points of tracks

• Tracks, Showers, delta rays, Michel electrons, low energy blips

Points of Interest

Identify start points of showers and end points of tracks

• Tracks, Showers, delta rays, Michel electrons, low energy blips

Dense Fragment Formation

Break track/shower fragment instances where constituent pixels touch

• Cluster track/shower fragments at this stage

Dense Fragment Formation

Break track/shower fragment instances where constituent pixels touch

Cluster track/shower fragments at this stage

Dense Fragment Formation

Break track/shower fragment instances where constituent pixels touch

Cluster track/shower **fragments** at this stage

Aggregate track/shower fragment instances into particles

Find edges that connect fragments that belong together

Aggregate track/shower fragment instances into particles

• Find edges that connect fragments that belong together

Aggregate track/shower fragment instances into particles

• Find edges that connect fragments that belong together

Aggregate track/shower fragment instances into particles

• Find edges that connect fragments that belong together

Interaction Aggregation

Aggregate track/shower instances into interactions

• Find edges that connect particles that belong together

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

Aggregate track/shower instances into interactions

• Find edges that connect particles that belong together

Aggregate track/shower instances into interactions

• Find edges that connect particles that belong together

Aggregate track/shower instances into interactions

• Find edges that connect particles that belong together

Primary Identification

Identify particle originating from the **primary vertex**

• Secondaries – Primaries

Primary Identification

Identify particle originating from the **primary vertex**

• Secondaries – Primaries

1000

500

0 [uuu -500

±1000

\$1500

±2000

×

2000

3000

Multi-detector training:

- J. Micallef looking into Minerva integration, see her talk later today!
- This would be directly apply to ND-LAr + TMS!

SBN-2x2 Joint ML Workshop

Goal: Familiarize analyzers with the inner workings of the ML-based reco. chain

Where: Tufts University, Boston, MA

When: 22-26 July, join us!!! https://indico.slac.stanford.edu/event/8926/

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

Conclusions

SPINE keeps progressing:

- Sparse-UResNet for pixel-level features + GNNs for aggregation
- ICARUS on the cusp of multiple physics papers using this pipeline
- SBND and 2x2 (high neutrino energy) simulation studies progressing fast! Stay tuned...
- Check out this brand new 2x2 interactive reconstructed event!

Backup Slides

DUNE and SBN

Two US-based neutrino oscillation experiments use/will use LArTPCs

Deep Underground Neutrino Experiment (DUNE), 2028-?

1300 km: enhance matter effects

- Mass ordering, CP violation
- DUNE-FD rate: O(10³) v / year

Short Baseline Neutrino (SBN) program, 2015-2027

0.6 km: observe anomalies

- New type of neutrino?
- SBN S/B ratio: ~ O(10⁻⁵)

Neutrino Oscillations

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

Particle Imaging Detectors

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

Scalability

The MiniBooNE Low Energy Excess

Veto Region

Signal Region

MiniBooNE was a short baseline neutrino experiment

- Booster Neutrino Beam (BNB) at Fermilab
- Scintillator-based Cherenkov detector

The MiniBooNE Low Energy Excess

MiniBooNE observed excess of "electron-like" neutrino events (LSND-like)

Other interpretation: we just don't understand neutrino cross-sections...

The MiniBooNE Low Energy Excess

MiniBooNE's limitations: Cannot tell electrons from photons

µ/e separation reliable

Single e and single-γ events **indistinguishable**

 $\pi^0 \rightarrow \gamma \gamma$ events **indistinguishable** from e if one gamma missing

The largest LArTPC in operation is ICARUS

- **500 t** fiducial mass (2 cryos, 4 TPCs)
- First operation in early 2000s underground (CNGS), at FNAL since 2018

LArTPC Image

LArTPC Image

The Weight of Expectations

Honorable mention: EM showers from low energy

- Crucial for solar + supernovae physics
- Particular interest at SLAC: A. Friedland et al.

Honorable mention: EM showers from low energy

- Crucial for solar + supernovae physics
- Particular interest at SLAC: A. Friedland et al.

Tomographic Reconstruction

In a wire TPC, we do not get 3D images, but rather 3 x 2D projections

• First task: combine projections into one 3D image

Tomographic Reconstruction

In a wire TPC, we do not get 3D images, but rather 3 x 2D projections

• First task: combine projections into one 3D image

Two feature update steps

1. Edge update

$$\mathbf{e}_{ij}' = \phi_{\Theta}(\mathbf{x}_i,\,\mathbf{x}_j,\,\mathbf{e}_{ij})$$

2. Node update

 $egin{aligned} \mathbf{m}_{ji} &= \chi_{\Theta}(\mathbf{x}_{j},\,\mathbf{e}_{ji}) \ \mathbf{x}_{i}' &= \psi_{\Theta}(\mathbf{x}_{i},\,\Box_{j\in\mathcal{N}(i)}\mathbf{m}_{ji}) \end{aligned}$

Repeat **n** times (depth)

81

The GNN gives you a list of edge scores, not a partition For the **best partition**, ĝ, we must

select edges which minimizes the

Edge Selection

partition CE loss

Edge scores

Edge Selection

Instead, iterate:

- 1. Compute partition **loss** for the empty graph
- 2. Add the **most likely edge**, compute loss again
- 3. If $L_{n+1} < L_n$, update partition
- 4. Repeat until the next best edge has s_{ij} < 0.5

 $L \simeq 2.13$

Semantic Segmentation

Separate **topologically different** types of activity

• Tracks, Showers, delta rays, Michel electrons, low energy blips

Points of Interest

Narrow down a region proposal all the way to a point

• Predict masks at different scales with UResNet, predict position in pixel

Dense Fragment Formation

Break track/shower fragment instances where they touch

• Cluster track/shower fragments at this stage

Particle Aggregation

Aggregate track/shower fragment instances into particles

• Find edges that connect fragments that belong together

Interaction Aggregation

Aggregate track/shower particle instances into interactions

• Find edges that connect fragments particles that belong together

Particle Identification

Particle species much easier to infer in context

• Michel decays, secondary hadrons, shower conversion gaps, etc.

Particle Identification

Particle species much easier to infer in context

• Michel decays, secondary hadrons, shower conversion gaps, etc.

Primary Identification

Important to know which particle originate from the vertex

• Central to any exclusive analysis (study specific interaction channels)

Particle energy reconstruction

Currently using traditional techniques for particle energy reconstruction:

Range-based energy reconstruction of muons and protons

Particle energy reconstruction

Currently using traditional techniques for particle energy reconstruction:

- Range-based energy reconstruction of muons and protons
- Calorimetric energy reconstruction of electrons

Particle Identification

Classify **particles** within interactions into different species

• Electron, Photons, Muons, Pions, Protons

Paper: PhysRevD.104.072004

Particle Identification

Classify particles within interactions into different species

4

• Electron, Photons, Muons, Pions, Protons

4-0.000 0.000 0.335 0.325 0.791 (2) (0) (1217) (4084) (10968)

Observations/challenges:

- Currently no stat weighting
- Some invisible vertices
 - No obvious shower gaps
- Lack of Bragg peak (tracks)
 - Particles mostly not contained
 - Lots of nuclear interactions

0 1 2 3 Class label

Open Source

DeepLearnPhysics collaboration (ML techniques R&D)

- Public <u>LAr simulation</u>
 - Potential for open real data from prototypes
- Shared <u>software dependencies</u> with Docker/Singularity
- Open <u>reconstruction software</u> on GitHub
- Reproducible results: <u>PhysRevD.102.012005</u>

