Jun 25 – 28, 2024
ETH Zurich
Europe/Zurich timezone

Deep Learning applications for electron neutrino reconstruction in the ICARUS experiment

Jun 25, 2024, 3:25 PM
25m
HCI J4 (ETH Zurich)

HCI J4

ETH Zurich

ETH Zürich, Hönggerberg campus, Stefano-​​Franscini-​Platz 5, 8093 Zurich, Switzerland.

Speakers

Dae Heun Koh (SLAC) Drielsma Francois (SLAC)

Description

The ICARUS T600 detector is a liquid argon time projection chamber (LArTPC) installed at Fermilab, aimed towards a sensitive search for possible electron neutrino excess in the 200-1000 MeV region. To investigate nue appearance signals in ICARUS, a fast and accurate algorithm for selecting electron neutrino events from a background of cosmic interactions is required. We present an application of the general-purpose deep learning based reconstruction algorithm developed at SLAC to the task of electron neutrino reconstruction in the ICARUS detector. We demonstrate its effectiveness using the ICARUS detector simulation dataset containing nue events and out-of-time cosmic interactions generated using the CORSIKA software. In addition, we compare the selection efficiency/purity and reconstructed energy resolution across different initial neutrino energy ranges, and discuss current efforts to improve reconstruction of low energy neutrino events.

Presentation materials