
Implicit Neural Representation 
for Modeling the Photon 
Transportation in a LArTPC

Patrick TSANG (SLAC)  
CIDeR-ML Collaboration 
Jun 28, 2024 

Neutrino Physics and Machine Learning 2024 @ ETH Zurich



2

CIDeR-ML: Who are we?

A US-Japan collaboration to develop 
  
- differentiable detector simulator, 
- data-driven optimization methods,  
- detector inverse solver 

for neutrino experiments (e.g. LArTPC & Water Cherenkov). 

To provide common softwares, tutorials/examples and open 
dataset to the neutrino community for the above tasks.

Calibration and Inference of Detector Response with Machine Learning
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Introduction

Model

Input OutputParameters

- Physics (Ab, kb, …) 
- Detector (pixel/wire response, …)

List of points/segments of a 
particle trajectory w/ positions & 
energy depositions

Digitized output of pixel readout 

Waveform of an optical detector

Figures adopted from the paper “Highly-parallelized 
simulation of a pixelated LArTPC on a GPU” and 
larnd-sim software.

1. Simulation, F : Input → Output 
2. Reconstruction, F-1 : Output → Input 
3. Calibration & model tuning: Output →  Parameters 

Use of gradient-based optimization for automated, 
simultaneous optimization of model parameters, and 
inference of input or upstream physics that are not directly 
accessible. Condition: ∇F exists and well defined.
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How to implement a differentiable model?

1. Differentiable 
simulator  

• explicit handling of 
model parameters w/ 
differentiable 
functions 

2. Surrogate model  
• functional 

representation of the 
model 

1

2

1

1

2
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Scintillation Light Propagation Model 

Photon 
Detector𝜸

(x,y,z)

Traditional Approach (as a lookup table) 
- divide the detector volume into voxels of ~cm in size 
- for each voxel, simulate and propagate millions of photons 
- count the number of detected photons  
- visibility at (x,y,z) = # detected photons / # generated photons

reflected

scattered

direct

undetected

• Limited by memory usage 
• Not scalable for large detector 
• Simulation-based, difficult to calibrate
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Sinusoidal Representation Network (SIREN)
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Hidden Layers
Implicit Neural Representation 
Parameterize signals 
as continuous functions via 
neural networks, which are 
trained to map the domain the 
signal (e.g. spatial coordinates) 
to the target outputs (e.g. signal 
at those coordinates). 

f: RM → RN 

SIREN 
a simple multilayer perceptron 
(MLP) network architecture 
along with periodic sine function 
activations (Sitzmann et al., 
arXiv:2006.09661)

https://arxiv.org/abs/2006.09661
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Why SIREN?

By construction, SIREN is a continuous, differentiable signal representations 
=> modeling signals with fine detail, AND 
=> representing smooth gradient surface (and higher order of derivatives)

SIREN (arXiv:2006.09661)

f(x)

1st derivative

2nd derivative

Allows wide range of applications from gradient-based algorithms, solving 
differential equation, optimizing on the derivative … etc

https://arxiv.org/abs/2006.09661
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Visibility: SIREN v.s. LUT

Tsang et al., arXiv:2211.01505

LUT (top) 
- 74 × 77 × 394 = 2.2 M voxels (5 cm in size) 
- 180 PMTs = ~404 M parameters 

SIREN (bottom) 
- 5 hidden layers, 512 hidden features 
- ~1.5 M parameters

ICARUS Simulation  
Visibility at x = −362.5 cm

Visibility Gradient 
PMT#63 at x = −362.5 cm

SIREN can reproduce both values and  
gradients of the visibility LUT with much 
smaller number of parameters.

LUT

SIREN

https://arxiv.org/abs/2211.01505
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SIREN: Data Driven Calibration

• point-like source, i.e. visibility at (x,y,z), is not 
accessible in data 

• infer light signal from physics objects (e.g. tracks) 

product of 
all PMTs

Observed p.e. 
for j-th PMT

Predicted 
light signal

Poisson Likelihood

Optimize SIREN parameters using track data 

For the rest of the talk, I will show some real world applications of SIREN 
using cosmic rays data from Module-0 Demonstrator.  

Figures extracted from Tsang @CHEP2023.

3D Image of an anode-cathode 
crossing track from charge readout

Observed and Predicted Light Signal

Light Signal 
~ ∑ Qi * vis(ri)

Sum charge 
(Qi) over the 
track image

visibility at 
charge 
coordinates ri 



11

Module-0: SIREN from Simulation

Before Calibration 
- train SIREN with LUT from simulation (uncalibrated) 
- ~10% discrepancy between observed and predicted 

light signals 

Module-0 Demonstrator 
SIREN from Simulation (LUT)

Simulation is reasonable, but 
not perfect. Need calibration.
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Module-0: SIREN after Calibration

After Calibration 
- re-optimize SIREN parameters with tracks 
- no bias and smaller variance

Module-0 Demonstrator 
SIREN with Data Calibration
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SIREN can be calibrated to remove 
data-simulation discrepancy. 
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Build a SIREN Model Directly from Data

Uncalibrated 
- SIREN trained from LUT (simulation) 
- suffer from data-MC discrepancy  

Fine Tuning 
- use uncalib. SIREN model as initial 

parameters 
- re-optimize with tracks (calibration) 

From Scratch 
- random initialization of SIREN 

parameters 
- optimize with tracks

SIREN model can be constructed from data alone, 
without prior knowledge from simulation.

From Scratch
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Example Events
Only one chamber TPC-0 is presented in this study. 
Grayed out points (unclustered or in TPC-1) are excluded.

TPC-0 TPC-1

Better agreement after calibration.



15

Visibility Map (LCM)

Calibrated model gives higher 
visibility near SiPM.
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Visibility Map (ArcLight)

Data matches simulation, with a 
little more diffusion in visibility.  

May provide useful insights for detector R&D.
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Hyper-Parameter Optimization w/ Data

Data driven method to determine the 
optimal model parameters and 
minimum sample size.
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Application: T0-Finding

Initial 
guess

Truth

after 
some 
iter.

1. Given a charge-light pair, 
randomly initialize t0 within 
detector volume 

2. Calculate loss w.r.t. observed 
light output 

3. Shift the whole track by Δx 
and repeat until “best” match 
is found. 

Classical gradient descent 
optimization problem. 

More advanced examples of 
multi-parameters optimization in 
upcoming talk(s).
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Application: Flash Matching

Charge Readout Light Readout

Match
1. Make a hypothesis of associate i-th 

charge to j-th light readouts 
2. Minimize pairwise loss Lij 
3. Repeat for all pairs (N2) 
4. Bipartite matching - find the optimal 

pairs to minimize the total loss
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Flash Matching (cont.)

Flash-matching Performance w/ variations in charge and PMT 
(Toy ICARUS Simulation)

To Speed Up 
- Scan pairwise loss in a coarse Δx step 

- Reject “obvious” mismatched pairs, or keep 
only top-k pairs 

- N2 → O(N) pairs 
- Optimize in batch 
- Benchmark: matching O(10) clusters, ~1s

Pairwise Loss Scan

Reject
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Real World Application: DUNE 2x2 ND 
Oops… No Data!
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Application for DUNE-ND 2x2

DUNE-ND 2x2 Multi-Module Visibility 
Sam Young (Stanford) @APS Apr 2024
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Application for DUNE-ND 2x2 (cont.)

DUNE-ND 2x2 Flash Matching - Toy Simulation 
Carolyn Smith (Stanford) @APS Apr 2024

Before Matching

After Matching
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Work in Progress: AI/ML T0 Reconstruction

Charge Readout Light Readout

AI/ML Model

List of {T0}
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Proof-of-Concept Model: Single Track

Charge 
{x,y,z,q}

Light

(256,1) (256,1)

MLP

concat

MLP

Nodes: Sample n points along the track 
Edges: Connect nearest neighbor(s) 
GNN: GCNConv w/o edge weights

Zhe Zhang (SLAC)
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Preliminary Results on AI/ML T0 Reco.

Zhe Zhang (SLAC)

Training 60k single tracks 
batch size 1000

Test sample 20k 
RMS = 4.49 cm

• not bad for an initial attempt 
• how to aggregate charge image with multiple objects?  
• how to match multiple charge and light clusters?
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Conclusions

• propose the use of sinusoidal representation network 
(SIREN) to model the light propagation for LArTPCs 
• memory efficient => scalable for large detectors 
• optimizable w/ data => calibration  
• smooth gradient surface => further applications 

• more use cases of differentiable modeling in the 
upcoming talks



Backup Slides
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Liquid Argon Time Projection Chamber (LArTPC)

Charge Readout System 
a set of Interlaced wires or pixels 
drift time O(ms)

Light Readout System 
detection of scintillating photons at O(ns)

Drift distance = Drift Velocity * (t - t0)
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Examples of LArTPC Detectors

ICARUS** 
- largest LArTPC in operation with 

wire readout 
- 760 ton LAr in 2 TPCs 
- each ~3.6 m x 3.9 m x 19.9 m 

Module-0 Demonstrator 
- 1st ton-scale prototype of 

DUNE* near detector design 
- ~0.7 m x 0.7 m x 1.4 m 
- divided into 2 TPCs 
- pixelated charge readout 
- 2 different optical detector 

prototypes: LCM & ArcLight

Pixelated Charge Readouts

Pixelated Charge Readouts
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*DUNE: Deep Underground Neutrino Experiment 
**ICARUS: Imaging Cosmic And Rare Underground Signals
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Proposed LArTPC Detectors

DUNE Near Detector-Liquid Argon (ND-LAr) 
- 7x5 array of 1 m x 1m x 3m detector 

modules (similar design as module-0 
demonstrator) 

- ~67 ton of LAr

DUNE Far Detector 
- 4 x ~17-kton detector modules 
- each ~19 m x 18 m x 66 m

Scalability is the key for the future 
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SIREN Performance
lo

g 1
0 (
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s 
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E
N
)

log10 (vis LUT)
log10 (vis LUT)

SIREN is able to represent LUT with ~1% in the high 
visibility region (vis. > 1e-2).  

The overall (average) bias is ~7-8%, which is dominated 
by the statistical fluctuation of the LUT at low visibility. 

special bin 
for vis=0
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Statistical Uncertainty in LUT

Generation of the photon library is limited 
by finite statistics. 

The input data to the SIREN are 
subjected to statistical uncertainty (more 
prominent for voxels with low visibility).

y

y

y

z
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Toy Model: A Study w/ and /o Stat. Err.

Toy Model: analytical (smooth) model that roughly reassemble the features of LUT. 
No statistical fluctuation. 

Toy Model + Noise: sampling from toy model, assuming 1e6 photons per voxel, 
~same statistical uncertainty as the LUT.
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SIREN Performance 
w/o Statistical Uncertainty

Toy Model 
- train SIREN w/ toy model 

- NO stat. fluctuation 
- compare SIREN output to the 

analytical model 
- ≤ 1% bias 
- systematic error for SIREN
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SIREN Performance 
w/ Statistical Uncertainty

Toy+Noise Model 
- train SIREN w/ toy+model 

- input data with stat. 
fluctuation  

- compare SIREN output to the 
input data 

-  ≤ 1% bias at high visibility values 
- bias increases gradually for lower 

visibility 
- comparable to the expected 

stat. err. 
- contributions from both statistical 

and systematic
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SIREN Performance 
Learning the Underlying Distribution

Toy+Noise Model (Ref: Toy) 
- train SIREN w/ toy+model 

- input data with stat. 
fluctuation  

- compare SIREN output to the 
analytical model (i.e. the truth 
distribution) 

- same bias as trained with Toy 
Model (i.e. input data w/o stat. 
uncertainty) 

- statistical fluctuations suppressed

SIREN is able to learn the underlying distribution at ≤ 1% level, even with 
the imperfect input data.
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Case 1: LUT == 0, SIREN high vis.

LUT

SIREN

No light at the base / mount of PMT. 
SIREN (as a continuous parameterization) tries to map the visibility 
toward max. visibility = 1. 

Negligible impact on physics. It corresponds track hitting directly to 
the PMT, leaving NO ionization charge. Likely there is a fiducial 
volume in the high level analysis.
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Case 2: SIREN Overpredicts Visibility

Next to the frame structure Slightly away from the structure

LUT

SIREN

LUT

SIREN

SIREN’s limitation on sharp 
edge transition.
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Module-0 Detector

Short term goal 
- build a prototype of 2x2 array of 

detector modules  
- test w/ NuMI neutrino beam at 

Fermilab 

Long term goal 
- build a 7x5 array (TBC) for the 

DUNE Liquid Argon Near 
Detector
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Module-0 Charge Readout System

y

x

z

E
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View from the top of Module-0

LArPix Tile

- 2 drift volumes (TPCs) 
- separated by a cathode plane 
- 4x2 LArPix tiles per anode plane 
- 70x70 pixels per tile 
- pixel pitch 4.43 mm
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Module-0 Light Readout System

y

x

z

Light Readout System of Module-0

- 4 LCM and 4 ArCLight tiles per TPC 
- each tiles ~300 mm x 300 mm x 10 mm 
- 6 SiPMs per tile 
- total of 48 SiPMs per TPC

LCM tile

2 SiPMs 2 SiPMs 2 SiPMs

ArCLight tile

6 SiPMs
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Data Selection for Module-0

• data collected between 4/4/21 - 4/10/21 at Bern 
• “default” settings (0.5 kV/cm, med. threshold ….) 

• cathode-anode crossing tracks in TPC-0 
• one clustered object per charge image 
• dbscan eps=25 mm, min_samples=5 

• matching charge-light pairs by trigger timestamp 
• ~680k tracks selected 

• training/validation/testing samples in 75-15-15 splitting 
ratio 

•  for track statistic study, splitting ratio is 20-80 for 
training/testing
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Note on SiPM Indexing

** Grayed out points are excluded from this analysis 
• unclustered points, or 
• portion of track in TPC-1
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Charge-to-Light: SIREN v.s. LUT

• train a SIREN model using simulated 
data (i.e. LUT) 

• point-source input 
• {xi, yi, zi} -> {visi0, visi1, …, visi47} 

• calculate charge-to-light prediction 
• pred. ~ ∑ Qi vis(ri) 

• vis(ri): either from LUT or SIREN 
• both methods are practically the same 

<<1% difference
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Calibration of SIREN Model

Calibration => Multi-parameters optimization problem of the SRIEN model 

Objective minimize the difference between observation and prediction

Prediction for SiPM-j

visibility by SIREN 
~7k parameters (floating)

“effective light-yield”  
for 48 SiPMs (floating)

measured charge 
of the track (fixed)

locations of charge 
deposition (fixed)

Loss function chi2 = ∑ j (obsj - predj)2 / (predj + ε2) ε = 5 p.e.

predj = Yj x ∑ Qi visj(ri)
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Hyper-Parameter Optimization w/ Data

Optimal SIREN model for module-0 demonstrator 
• determined by track data 
• # of layers = 1 
• # of features = 128 
• ~23k parameters 
• c.f. 12.6M for LUT in ~1 cm voxel size



48

How Many Tracks Needed?

- performance increase 
significantly from 5k to 50k 
tracks 

- difference diminishes to 
~0.1% from 50k and beyond 

- ~100k tracks are good 
enough to build a SIREN 
model for Module-0 
demonstrator


