Implicit Neural Representation for Modeling the Photon Transportation in a LArTPC

Patrick TSANG (SLAC) CIDeR-ML Collaboration Jun 28, 2024

Neutrino Physics and Machine Learning 2024 @ ETH Zurich

Calibration and Inference of **De**tector **R**esponse with **M**achine Learning

A US-Japan collaboration to develop

- differentiable detector simulator,
- data-driven optimization methods,
- detector inverse solver

for neutrino experiments (e.g. LArTPC & Water Cherenkov).

To provide common softwares, tutorials/examples and open dataset to the neutrino community for the above tasks.

CIDeR-ML Collaboration

SLAC

Not in pictures:

Yifan Chen, Kazu Terao, Zhe Zhang (SLAC), Carolyn Smith, Sam Young (Stanford), Ka Ming Tsui (IPMU), Masaki Ishitsuka (Tokyo U. of Sci.)

* Present in NPML

Introduction

Input

List of points/segments of a particle trajectory w/ positions &

Parameters

- Physics (Ab, kb, ...)
- Detector (pixel/wire response, ...)

- 2. Reconstruction, F^{-1} : Output \rightarrow Input
- 3. Calibration & model tuning: Output \rightarrow Parameters

Use of <u>gradient-based</u> optimization for automated, simultaneous optimization of model parameters, and inference of input or upstream physics that are not directly accessible. **Condition:** *VF* exists and well defined.

Output

Digitized output of pixel readout

Figures adopted from the paper "Highly-parallelized simulation of a pixelated LArTPC on a GPU" and 4 larnd-sim software.

How to implement a differentiable model?

SLAC

2	Implicit Neural Representation for Modeling the Photon Transportation in a LArTPC	Patrick Tsang
	HCI J4, ETH Zurich	09:00 - 09:25
	Q/A	
	HCI J4, ETH Zurich	09:25 - 09:35
	Simultaneous high-dimensional calibration with differentiable simulation towards data application	Yifan Chen
1	HCI J4, ETH Zurich	09:35 - 10:00
	Q/A	
	HCI J4, ETH Zurich	10:00 - 10:10
4	A differentiable simulator for LArTPCs: from proof-of-concept to real applications	Pierre Granger
	HCI J4, ETH Zurich	10:10 - 10:35
	Q/A	
	HCI J4, ETH Zurich	10:35 - 10:45
	Coffee break	
1:00	HCI J4, ETH Zurich	10:45 - 11:15
	Differentiable Physics Emulator for Water Cherenkov Detectors	Junjie Xia
2	HCI J4, ETH Zurich	11:15 - 11:30
	Q/A	
	HCI J4, ETH Zurich	11:30 - 11:40
1	Advancing Detector Calibration and Event Reconstruction in Water Cherenkov Neutrino Detectors with Analytical Differ	

1. Differentiable simulator

 explicit handling of model parameters w/ differentiable functions

2. Surrogate model

 functional representation of the model

Scintillation Light Propagation Model

Traditional Approach (as a lookup table)

- divide the detector volume into voxels of ~cm in size
- for each voxel, simulate and propagate millions of photons
- count the number of detected photons
- **visibility** at (x,y,z) = # detected photons / # generated photons
 - · Limited by memory usage
 - *Not scalable* for large detector
 - Simulation-based, difficult to calibrate

Sinusoidal Representation Network (SIREN)

SLAC

Implicit Neural Representation

Parameterize signals as <u>continuous</u> functions via <u>neural networks</u>, which are trained to map the domain the signal (e.g. spatial coordinates) to the target outputs (e.g. signal at those coordinates).

f: $\mathbb{R}^{M} \rightarrow \mathbb{R}^{N}$

SIREN

a simple multilayer perceptron (MLP) network architecture along with periodic <u>sine</u> function activations (Sitzmann et al., <u>arXiv:2006.09661</u>)

Why SIREN?

SLAC

By construction, SIREN is a continuous, differentiable signal representations => modeling signals with fine detail, AND

=> representing smooth gradient surface (and higher order of derivatives)

SIREN (arXiv:2006.09661)

Allows wide range of applications from gradient-based algorithms, solving differential equation, optimizing on the derivative ... etc

Visibility: SIREN v.s. LUT

SLAC

LUT (top)

- 74 × 77 × 394 = 2.2 M voxels (5 cm in size)
- 180 PMTs = ~404 M parameters

SIREN (bottom)

- 5 hidden layers, 512 hidden features
- ~1.5 M parameters

SIREN can reproduce both <u>values</u> and <u>gradients</u> of the visibility LUT with much smaller number of parameters.

SIREN: Data Driven Calibration

Module-0: SIREN from Simulation

Before Calibration

- train SIREN with LUT from simulation (uncalibrated)
- ~10% discrepancy between observed and predicted light signals

Simulation is reasonable, but not perfect. Need *calibration*.

Module-0: SIREN after Calibration

After Calibration

- re-optimize SIREN parameters with tracks
- no bias and smaller variance

SIREN can be calibrated to remove data-simulation discrepancy.

SLAC

Build a SIREN Model Directly from Data

SLAC

Uncalibrated

- SIREN trained from LUT (simulation)
- suffer from data-MC discrepancy

Fine Tuning

- use uncalib. SIREN model as initial parameters
- re-optimize with tracks (calibration)

From Scratch

- random initialization of SIREN parameters
- optimize with tracks

SIREN model can be constructed from data alone, without prior knowledge from simulation.

Only one chamber TPC-0 is presented in this study. Grayed out points (unclustered or in TPC-1) are excluded.

Example Events

SLAC

Visibility Map (LCM)

15

Visibility Map (ArcLight)

Hyper-Parameter Optimization w/ Data

SLAC

Application: T0-Finding

1. Given a charge-light pair, randomly initialize t0 within detector volume

SLAC

- 2. Calculate loss w.r.t. observed light output
- 3. Shift the whole track by Δx and repeat until "best" match is found.

Classical *gradient descent* optimization problem.

More advanced examples of multi-parameters optimization in upcoming talk(s).

Application: Flash Matching

SLAC

- 1. Make a hypothesis of associate *i-th* charge to *j-th* light readouts
- 2. Minimize pairwise loss Lij
- 3. Repeat for all pairs (N^2)

150

4. Bipartite matching - find the optimal pairs to minimize the total loss

Flash Matching (cont.)

SLAC

To Speed Up

- Scan pairwise loss in a coarse Δx step
 - Reject "obvious" mismatched pairs, or keep only top-k pairs
 - $N^2 \rightarrow O(N)$ pairs
- Optimize in batch
- Benchmark: matching O(10) clusters, ~1s

Real World Application: DUNE 2x2 ND Oops... No Data!

Application for DUNE-ND 2x2

DUNE-ND 2x2 Multi-Module Visibility Sam Young (Stanford) @APS Apr 2024 SLAC

Application for DUNE-ND 2x2 (cont.)

-SLAC

Work in Progress: AI/ML T0 Reconstruction

SLAC

Proof-of-Concept Model: Single Track

Nodes: Sample n points along the track Edges: Connect nearest neighbor(s) GNN: GCNConv w/o edge weights

Zhe Zhang (SLAC)

Preliminary Results on AI/ML T0 Reco.

SLAC

Zhe Zhang (SLAC)

Training 60k single tracks batch size 1000

Test sample 20k RMS = 4.49 cm

- not bad for an initial attempt
- how to aggregate charge image with multiple objects?
- how to match multiple charge and light clusters?

Conclusions

- memory efficient => scalable for large detectors
- optimizable w/ data => calibration
- smooth gradient surface => further applications
- more use cases of differentiable modeling in the upcoming talks

Backup Slides

Liquid Argon Time Projection Chamber (LArTPC)

Drift distance = Drift Velocity $*(t - t_0)$

Examples of LArTPC Detectors

SLAC

Module-0 Demonstrator

- 1st ton-scale prototype of DUNE* near detector design
- ~0.7 m x 0.7 m x 1.4 m
- divided into 2 TPCs
- pixelated charge readout
- 2 different optical detector prototypes: LCM & ArcLight

ICARUS**

- largest LArTPC in operation with wire readout
- 760 ton LAr in 2 TPCs
- each ~3.6 m x 3.9 m x 19.9 m

*DUNE: Deep Underground Neutrino Experiment **ICARUS: Imaging Cosmic And Rare Underground Signals

Proposed LArTPC Detectors

SLAC

DUNE Near Detector-Liquid Argon (ND-LAr)

- 7x5 array of 1 m x 1m x 3m detector modules (similar design as module-0 demonstrator)
- ~67 ton of LAr

DUNE Far Detector

- 4 x ~17-kton detector modules
- each ~19 m x 18 m x 66 m

Scalability is the key for the future

SIREN Performance

SIREN is able to represent LUT with $\sim 1\%$ in the high visibility region (vis. > 1e-2).

The overall (average) bias is \sim 7-8%, which is dominated by the <u>statistical fluctuation</u> of the LUT at low visibility.

Statistical Uncertainty in LUT

SLAC

Generation of the photon library is limited by *finite statistics*.

The input data to the SIREN are subjected to *statistical uncertainty* (more prominent for voxels with low visibility).

Toy Model: A Study w/ and /o Stat. Err.

SLAG

Toy Model: analytical (smooth) model that roughly reassemble the features of LUT. No statistical fluctuation.

Toy Model + Noise: sampling from toy model, assuming 1e6 photons per voxel, ~same statistical uncertainty as the LUT.

SIREN Performance w/o Statistical Uncertainty

SLAC

Toy Model

- train SIREN w/ toy model
 - NO stat. fluctuation
- compare SIREN output to the analytical model
- ≤ 1% bias
- systematic error for SIREN

SIREN Performance w/ Statistical Uncertainty

SLAC

Toy+Noise Model

- train SIREN w/ toy+model
 - input data with stat.
 fluctuation
- compare SIREN output to the *input data*
- \leq 1% bias at high visibility values
- bias increases gradually for lower visibility
 - comparable to the expected stat. err.
- contributions from both *statistical* and *systematic*

SIREN Performance Learning the Underlying Distribution

SIREN is able to learn the underlying distribution at \leq 1% level, even with the imperfect input data.

Case 1: LUT == 0, SIREN high vis.

No light at the base / mount of PMT.

SIREN (as a continuous parameterization) tries to map the visibility toward max. visibility = 1.

Negligible impact on physics. It corresponds track hitting directly to the PMT, leaving *NO* ionization charge. Likely there is a fiducial volume in the high level analysis.

Case 2: SIREN Overpredicts Visibility

³⁹

SLAC

Module-0 Detector

SLAC

Short term goal

- build a prototype of 2x2 array of detector modules
- test w/ NuMI neutrino beam at Fermilab

Long term goal

 build a 7x5 array (TBC) for the DUNE Liquid Argon Near Detector

Figure 1. Schematic of the 0.7 m \times 0.7 m \times 1.4 m Module-0 detector with annotations of the key components.

Module-0 Charge Readout System

View from the top of Module-0

- 2 drift volumes (TPCs)
- separated by a cathode plane
- 4x2 LArPix tiles per anode plane
- 70x70 pixels per tile
- pixel pitch 4.43 mm

SLAC

Module-0 Light Readout System

-SLAC

- 4 LCM and 4 ArCLight tiles per TPC
- each tiles ~300 mm x 300 mm x 10 mm
- 6 SiPMs per tile
- total of 48 SiPMs per TPC

- data collected between 4/4/21 4/10/21 at Bern
 - "*default*" settings (0.5 kV/cm, med. threshold)
- cathode-anode crossing tracks in TPC-0
 - one clustered object per charge image
 - dbscan eps=25 mm, min_samples=5
- matching charge-light pairs by trigger timestamp
- ~680k tracks selected
 - training/validation/testing samples in 75-15-15 splitting ratio
 - for track statistic study, splitting ratio is 20-80 for training/testing

Note on SiPM Indexing

** Grayed out points are excluded from this analysis

- unclustered points, or
- portion of track in TPC-1

SLAC

Charge-to-Light: SIREN v.s. LUT

- train a SIREN model using simulated data (i.e. LUT)
- point-source input
 - ${x_i, y_i, z_i} \rightarrow {vis_i^0, vis_i^1, ..., vis_i^{47}}$
- calculate charge-to-light prediction
 - pred. ~ $\sum Q_i vis(r_i)$
- vis(r_i): either from LUT or SIREN
- both methods are practically the same <<1% difference

Calibration => Multi-parameters optimization problem of the SRIEN model

Objective minimize the difference between observation and prediction

Loss function chi2 = $\sum_{j} (obs_j - pred_j)^2 / (pred_j + \epsilon^2)$ $\epsilon = 5 p.e.$

Hyper-Parameter Optimization w/ Data

Optimal SIREN model for module-0 demonstrator

- · determined by track data
- # of layers = 1
- # of features = 128
- ~23k parameters
- c.f. 12.6M for LUT in ~1 cm voxel size

Ops. - Pred. / (Obs. + Pred.) 0.10 - .010 0.10 - .020 Number of Tracks 133 10k 100k --- 5k 50k 0.05 -200 400 600 800 1000 0 Pred. [p.e.]

- performance increase significantly from 5k to 50k tracks
- difference diminishes to
 ~0.1% from 50k and beyond
- <u>~100k tracks</u> are good enough to build a SIREN model for Module-0 demonstrator

SLAC