


The JUNO Experiment

 Jiangmen Underground Neutrino Observatory

 Main physics goals
 Determination of the mass ordering at the 3σ level in 

6 years of data taking

 Precise measurement of oscillation parameters, 
�12, ∆�21

2  and ∆�31
2  

 JUNO also serves as an observatory detecting neutrinos 
from Supernova, Sun, Atmosphere and Earth etc.
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JUNO Location

Reactor neutrino energy spectrum 
expected to be observed

Experiment Target Mass E Resolution
KamLAND 1000t 6%@1MeV
D. Chooz 8+22t

8%@1MeVRENO 16t
Daya Bay 20t
Borexino 300t 5%@1MeV

JUNO 20000t 3%@1MeV



JUNO Site
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~ 650 m

Experiment 
Hall

564 m
Vertical Tunnel

1266 m Slope tunnel

Surface buildings / campus
• Office / Dorm
• Surface Assembly Building
• LAB storage (5 kton)
• Water purification / Nitrogen
• Computing
• Power station
• Cable train



The JUNO Detector
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Top Tracker
Three layers plastic 

scintillator to veto muons

~650m overburden
(1800 m.w.e)

Water Cherenkov Detector
35 kton of ultrapure water as 

passive shield and 
cherenkov detector Central Detector

World-largest acrylic vessel (Φ 
35.4 m, 124±4 mm thickness)

20 kton LS
17,612  20” PMTs 

and 25,600  3” PMTsStainless steel truss

～78% PMT coverage
3%@1MeV energy resolution



JUNO Reconstruction Road-map (for NMO)

5Work shown in this talk is non-exhaustive
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Outline 

 PMT waveform reconstruction
 Photon counting and calibration data based reconstruction

 Particle reconstruction in MeV region
 Reactor neutrino vertex and energy recostruction

 Particle reconstruction in GeV region
 Atmospheric neutrino directionality, PID and energy reconstruction 

 Muon track reconstruction
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PMT waveform reconstruction
Photon counting and calibration data based reconstruction



ML Based Photon Counting

 Energy resolution is crucial for NMO sensitivity in JUNO, where PMT charge smearing 
is one of the dominant factors

 Can we use ML to predict the number of received photons of each PMT?

 Perform 1-D convolution on the raw waveform

 Use a classification model to “count the photons”
8Details in Guihong’s talk 



ML Based Photon Counting

   Model: Customized RawNet
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RawNet CMCharge classification CM

2% to 2.8% relative improvement 
on the energy resolution can be 
achieved

Details in Guihong’s talk 



Calibration-based Waveform Reconstruction
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 Assemble “fake” waveform using calibration data, then train ML model  (MLP) to learn from 
calibration data, and reconstruct number of PEs

 Immune from the MC-data discrepancy problem

 “Long tail”  problem of the deconvolution-based waveform reconstruction algorithm is mitigated

• Input: 
“Fake” waveform

• Model:
32*64 MLP network

• Output:
Number of PEs

Ref. Junting’s poster
@Neutrino2024

work in progress

work in progress

work in progress



Particle reconstruction in MeV region
Reactor ν vertex and energy



Reactor Neutrino Reconstruction: Principle
 Reactor neutrinos (��) are detected via the inverse beta decay reaction in the CD

 The �+ generates a prompt signal in the CD

 The neutron generates a delayed signal in the CD, with a 2.2 
MeV gamma from the neutron capture process

 Seek the coincidence between the detection of a positron and 
a neutron signal, with ~200 μs

 Classical methods are based on likelihood algorithms, taking
 Charge, first hit time, position of each fired PMT

Energy and radial 
resolution of 

QTMLE 

Can this be further 
improved using ML?



IBD Reconstruction: Planar CNN

 Treating the JUNO detector as a camera and 
using the image recognition technique
 The PMT data is projected onto the planar surface, 

and fed into CNN models

 VGG and ResNet models are customized for JUNO

 Distortion, i.e. breaking of the SO(3) 
symmetry is a potential problem

 Can we do better? 13
13

VGG-J

ResNet-J



IBD Reconstruction: Spherical GNN

 The Spherical GNN method takes the SO(3) 
symmetry of JUNO detector into account

 Convolution is performed on the graph using 
spectral graph method

 Convergence becomes easier compared to 
planar CNN

 Both methods gives similar resolution as 
classical methods 14

GNN-JHEALPix Sampling
Scheme to pixelise 

the detector

Then build Graph with 
adjacency matrix

 Nucl.Instrum.Meth.A 1010 (2021) 165527



Particle reconstruction in GeV region
Atm. ν directionality, PID, energy and muon track



Methodology
 Light received by a PMT is the superposition of light from many points on tracks in the detector

 The number of photo-electrons (PEs) seen by a PMT as a function of time is determined by the 
event topology

 Features related to event topology can be extracted from deconvoluted PMT waveform to get:
 Track direction
 Track starting and stopping points
 Track dE/dx

16
PMTs at different angles wrt the track 
see distinct shapes of nPE(t) Ref. Duyang’s talk @TIPP2023

slope

θ

Directionality
Energy
PID



Methodology
 Event reconstruction with Deep-learning and Waveform INformation (EDWIN)

Deconvoluted PMT Waveform

PMT Features

Point Clouds

Spherical Projection

Planer Projection EfficientNetV2

DeepSphere

PointNet++

Direction
Energy
Flavor
Vertex
Track
Others...

Output



Atmospheric Neutrino Directionality Reconstruction

Opening angle resolution

Zenith angle resolution

�� 퐶퐶

�� 퐶퐶

�� 퐶퐶

�� 퐶퐶

• Neutrino direction is directly 
reconstructed rather than the final-
state charged lepton direction, with 
good angular resolution.

• World’s first attempt to reconstruct 
atmospheric neutrinos’ directionality 
in a large homogeneous LS detector.

Phys. Rev. D 109.052005



Atmospheric Neutrino Flavor Identification

19

Strategy 1: 
• Hybrid model: PointNet++ and DGCNN
• PMT features from primary trigger fed into PointNet++
• Scalar neutron capture features fed into DGCNN
Strategy 2: 
• Spherical image-based model: DeepSphere
• Multiple neutron-candidate triggers are fed together with 

the primary trigger
• All features are at the PMT-level

3-label classification: 
• Discriminate �� 퐶퐶, �� 퐶퐶 and �퐶  
2-label classification: 
• Discriminate �/�
3+2 label classification:
• Combine the 3-label and 2-label models to 

achieve 5-label classification (roughly consistent)

Details in Jiaxi’s and Wing’s talks 



Atmospheric Neutrino Energy Reconstruction

�� 퐶퐶
visible energy

�� 퐶퐶
visible energy

1% - 8% visible energy resolution for �e CC from 0.2-15GeV 

work in progress work in progress

�� 퐶퐶
visible energy

�� 퐶퐶
visible energy

work in progress work in progress

1% - 5% visible energy resolution for �� CC from 0.2-15GeV 
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퐹퐶 �� 퐶퐶
neutrino energy

• Results based on the Spherical GNN

• Visible energy resolution is promising
• Neutrino energy resolution for fully 

contained neutrinos is sub-optimal, 
but still provides better sensitivity with 
preliminary NMO analysis

work in progress



Muon Track Reconstruction: Methodology

 Isotopes produced by cosmic muons are the main backgroud of IBD signals 

 Precise reconstruction of muon tracks is critical to veto major backgrounds

 Current ML-based reconstruction strategy for muons:
 Classify through-going, stop and bundle muons

 Reconstruct the entry point and exit point of LS through going, stop and bundle muons

21



Muon Track Reconstruction: Performance
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work 
in progress

work 
in progress

through-going muon through-going muon

through-going muon
~0.25°

through-going muon
~0.09m

Muon Classification CM 
Classification is precise

work in progress



Summary

 Numerous ML models are (being) developed in JUNO
(this talk shows only a sub-set)

 Even more exciting work is ongoing

 In general, comparable or superior performance can be 
achieved using ML, enhancing the NMO sensitivity

 Challenges ahead:

 JUNO is a big detector, bringing challenges due to large 
quantities of data, sophisticated geometry and readout
(training speed, GPU memory, ...)

 MC-Data discrepancy is the major challenge damaging the 
reliability of ML models

 Studies making use of calibration data have started

23



Thanks for your attention


