

Machine Learning-Assisted Unfolding for Neutrino Cross Section Measurements

Roger Huang

Andrew Cudd, Masaki Kawaue, Tatsuya Kikawa, Ben Nachman, Callum Wilkinson

NPML 2024 ETH Zurich, Switzerland June 27, 2024

Neutrino Cross-Section Measurements are Hard

- We aim to measure differential cross sections $(d\sigma/dx)_i$ in some truth-level kinematic bins x_i
- What we actually measure is detector-reconstructed quantities are some number N signal events and B background events in each detector-level kinematic bin j, related by

$$\left(\frac{d\sigma}{dx}\right)_{i} = \frac{\sum_{j} \widetilde{U}_{ij}^{-1} \left(N_{j} - B_{j}\right)}{\Phi_{\nu} T \Delta x_{i} \epsilon_{i}}$$

for a response matrix **U**, total flux Φ , total target nuclei **T**, and detection efficiency ϵ

Unfolding is deciding how to invert this response matrix, deal with background subtraction, and do efficiency corrections, all of which can in general have **high-dimensional dependencies**

• More observables used in unfolding reduces marginalization over effective detector effects

Conventional methods struggle to unfold beyond 2 or 3 dimensions, as the number of required bins rapidly becomes unmanageable

Machine Learning Assistance -The Likelihood Ratio "Trick"

Train a classifier using a weighted binary cross entropy loss function, where each event x_i with weight w_i has a true label p_i ⊂ {0, 1} and gets a network prediction of q_i:

Loss $(p_i, q_i) = -w_i^* (p_i^* \log(q_i) + (1-p_i)^* \log(1-q_i))$

If we train with dataset *A* with labels 1 and dataset *B* with labels 0, then we can reweight each of the events x_i in *B* by the likelihood ratio:

 \mathscr{L} [A,B](x_i) = p_A(x_i) / p_B(x_i) ≈ q_i / (1-q_i)

 Converts the difficult problem of multidimensional density estimation into the "easy" problem of classification!

OmniFold - Concept

- With some given generator and detector simulation, we can train classifiers using the likelihood ratio trick to do event-by-event reweighting of the generated events to fit the observed data
 - Classifier is effectively unrestricted in the number of variables it uses in its decisions, allowing us to unfold in very high dimensional space
- *Automatically* get background subtraction and efficiency correction
- From the reweighted generator events, we can then extract unbinned unfolded results of any observable
 - But the usual warnings apply about extracting observables in phase regions of very low efficiency

For more info:

- Original paper https://doi.org/10.1103/PhysRevLett.124.182001
- Code release with implementation example <u>https://github.com/hep-lbdl/OmniFold</u>

OmniFold - Outline

- 1. $\omega_n(m) = \nu_{n-1}^{\text{push}}(m) L[(1, \text{Data}), (\nu_{n-1}^{\text{push}}, \text{Sim.})](m),$ 2. $\nu_n(t) = \nu_{n-1}(t) L[(\omega_n^{\text{pull}}, \text{Gen.}), (\nu_{n-1}, \text{Gen.})](t).$
 - OmniFold iterates on the above 2 steps to obtain *pull* weights on (m) and *push* weights v_n(t) for each simulated event with reconstructed value m and true value t
 - A set of final push weights reweights the entire set of generated events to provide our unfolded result

*Work funded by US-Japan grant

Test Setup - T2K Public Dataset

- Using public dataset of ~1.2 million T2K simulated near-detector events that was used in a v_{μ} CC0 π 2D differential cross-section analysis [1]
- Dataset includes muon and leading proton kinematics for each event
 - Also info about which subdetector the muon and proton were each reconstructed in
- We randomly divide the dataset in half and set aside one half as "data" for the unfolding procedure
- Create sets of **fake data** by applying various reweights to the "data"
 - Compare against the truth values after unfolding to evaluate performance
- From the remaining half that is considered simulation, generate 100 throws (pseudo-experiments) varying systematic and statistical uncertainties
 - Systematics include flux, cross-section, detector response uncertainties

OmniFold Classifier Setup

- Neural network structure: simple MLP with 2 hidden layers of 100 nodes each
- Input variables (everything in the public dataset):
 - **Primary muon** total momentum, $\cos \theta$ (forward angle), ϕ (transverse angle)
 - Leading proton total momentum, $\cos \theta$, ϕ . Values set to 0 when no proton present
 - For detector space only: Detector sample ID (1-hot encoded, out of 8 possible sample IDs)
- Using one NVIDIA A100 on a NERSC Perlmutter node, takes 0.5-1 hours to run 15 OmniFold iterations on one set of data/MC
 - Multiply by desired number of throws and neural network trials

OmniFold Procedure Example

Step 1: reweight simulated reconstructed MC to observed data

Step 2: reweight generator-level MC to itself with pulled reweighting factors from step 1

Reminder: the reweighting procedure is unbinned!

OmniFold Procedure Example

- One iteration is a step 1 + step 2
 combo
- On a new iteration, go to step 1 again, but starting with pushed reweighting factors on the simulated reconstructed events from the previous iteration's step 2 result
- Repeat for any number of iterations
 - Regularization comes from a cutoff on the number of iterations, based on some chosen convergence criterion

Example Result - Single MC Throw

- Compare against result of Iterative Bayesian Unfolding (IBU) (d'Agostini unfolding) as a conventional benchmark
 - Note: IBU result for each variable comes from a separate unfolding, whereas OmniFold gets all observables from one unfolding
- OmniFold result looks less sensitive to fluctuations in the single variable distribution

Uncertainty Budget

- Total uncertainty is spread in results from adding systematic + statistical variations to MC
 - OmniFold uncertainties notably lower than conventional IBU
- Aleatoric uncertainty from randomness of network initialization and training should be rendered negligible by averaging the results of multiple trials
 - NN initialization uncertainties here are from averaging 5 trials

Bin-by-bin Results - δp.

 δp_T Unfolded Ratio to Truth Fake Dataset 0

Performance Comparison

- Calculate χ^2 for each binned variable of interest using full covariance matrix from unfolding fake data to 100 MC throws with systematic/statistical variations
 - Note: for a comparison in 4 variables for a single fake dataset, IBU had to be run 4 separate times while OmniFold gets all of them from a single unfolding pass-through
- OmniFold achieves comparable or better performance than conventional IBU in almost all cases

Fake Dataset	Unfolding Method	Muon (p,θ) χ ² (DoF=58)	δρ _T χ ² (DoF=14)	δα _T χ ² (DoF=18)	
Shape only $\delta \phi_{T}$	IBU	13.6	7.3	1.9	6.4
	Omnifold	15.1	1.3	1.6	1.7
Shape + Norm. $\delta \phi_{\mathrm{T}}$	IBU	64.8	18.3	14.1	20.9
	Omnifold	23.9	1.7	2.5	2.9

Summary

- OmniFold provides a general method to perform high-dimensional unfolding of several (all) observables simultaneously
 - This has been used in collider physics already, but neutrino experiments can similarly benefit from its advantages
- We have demonstrated for the first time OmniFold's application to a neutrino cross-section measurement using a public T2K near-detector simulated dataset
 - OmniFold has comparable or better performance than a conventional approach across several observables with several fake data tests
 - Paper and code release in preparation!
- Next steps for application to real data:
 - Improvements to information included in MC
 - Possible improvements to classifier choice
 - Dealing with low statistics of real neutrino data

Backup

OmniFold Convergence

- Data-driven convergence criterion for OmniFold: when reweighting variation from NN initialization/training effects is larger than overall change in reweighting 0.07 -
- Resulting cutoff seems reasonable on the χ^2 curves

Single-Transverse Kinematic Variables

- Single-transverse variables (STVs) are measures of the kinematic imbalance between the primary lepton and hadron in a CC interaction
- These variables serve as a good proxy for studying various nuclear effects
 - No imbalances in the absence of nuclear effects

Iterative Bayesian Unfolding (IBU)

- Also goes by other names: d'Agostini unfolding, Lucy-Richardson deconvolution
- Given data, response matrix, and prior (all binned): iteratively perform Bayesian updates on the prior
- OmniFold is mathematically an unbinned version of this approach

In the IBU approach for our tests:

- Estimate binned background from MC and subtract it from the data
- Perform bin-by-bin efficiency corrections

