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LEGEND - Large Enriched Germanium Experiment for Neutrinoless ββ Decay
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Aims to develop a phased, Ge-76 based double-beta decay experimental program with discovery potential at a half-life beyond 10!" years

LEGEND-200 LEGEND-1000



LEGEND - Large Enriched Germanium Experiment for Neutrinoless ββ Decay
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0nββ in Ge:
Single point-like 
energy deposition
in 1 mm3 volume



High Purity Germanium Detector
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Single site event

Multi site event

Simulation: 

Point contact detector

Operates at cryogenic temperature



High Purity Germanium Detector
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Real detector pulses: 



Signal Denoising with Machine Learning
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Signal Denoising:

• Improves measurements of pulse shape characteristics 

Ø  Better energy resolution and background rejection efficiency

• Helps identify low-energy signal events that are masked by electronic noise

• Could push for a lower energy threshold

With Machine Learning:

• Fast processing once model is trained; scalable

• Trained models can be extended to other applications

Ø e.g. pulse shape discrimination, drift time measurement

• Applicable to other detector technologies and one-dimensional electronic signals

• Outperforms many traditional denoising methods [1]

Especially useful for BSM 
studies and background 
identification



Data for training, validation and testing
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Sources of data (from a PPC detector in GeRMLab at Queen’s):

• Simulated clean pulses for the PPC detector

• Calibration data with known energy distributions: 

 241Am (60 keV, low energy/high noise); 60Co (1173 keV and 1332 keV, high energy/low noise)

• Pure detector noise

Synthetic Data Augmentation:



Denoising with Convolutional Autoencoder
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[1] : Anderson, M. R. et al., “Performance of a convolutional autoencoder designed to remove electronic noise from 
p-type point contact germanium detector signals,” Eur. Phys. J. C 82, 1084 (2022). arXiv:2204.06655; 
doi:10.1140/epjc/s10052-022-11000-w

https://arxiv.org/abs/2204.06655
doi:10.1140/epjc/s10052-022-11000-w


Denoising with Convolutional Autoencoder

Regular model: maps a noisy pulse to its corresponding clean pulse. Removing noise by reinforcing the model to 
reconstruct the clean signal from the noisy input

Noise2Noise model [2]: trained without simulation/clean pulses. Maps a noisy pulse to another noisy pulse with the 
same underlying trace. Model learns the mean of the distribution of the noisy pulses, which is the unobserved 

underlying true pulse 
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Autoencoder Results
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On synthetic data with detector noise (Am-241 60keV peak):
• Superior over traditional denoising methods from MSE
• Improvement on energy resolution at various noise levels 

On real detector data (Am-241 60keV peak):
• Better statistical agreement between noisy and denoised pulses 

than best fit library pulse via χ2 fit
• Less substantial improvement on energy resolution due to 

unmodelled effects in real data, e.g. multiple sources of 
exponential decay that pole-zero correction did not account for

• Requires lower shaping time → shorter pulse length and more 
efficient data storage/analysis 

denoised vs. trapezoidal filtered

[1]: arXiv:2204.06655

https://arxiv.org/abs/2204.06655


A First Look at Noise2Noise Autoencoder Denoiser 
on LEGEND Low Energy Dataset

• Denoised by a pre-trained Noise2Noise model

• The N2N model was trained with pole-zero corrected PPC detector data and noise traces collected at Queen’s 

lab. We expect the model to perform even better on LEGEND data once it is trained further with LEGEND data, 

possibly without the need of any exponential decay correction

11



Further Investigation on Denoising without Simulation/Clean Data

• Training a denoiser without clean ground-truth pulse or simulated data is more practical, 

and it allows for a more realistic, flexible model, unconstrained by simulations

• Noise2Noise model works well if it is trained on a large amount of data

• There are many recent novel methods to explore that could provide further improvements
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Dual Critics Generative Adversarial Network
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Generative Adversarial Network (GAN) [3]:

• Consists of a generator and a 

discriminator/critic

• Generator G generates samples x from z, 

and the critic C tries to determine whether 

the samples are from the real or generated 
data

z x
G

real or fake?

C

Dual Critics GAN [4]:

• Consists of one generator and two critics 

denoised denoised + noise = fake noisy

noisy – denoised = fake noise

𝑦!: detector pulses 
𝜂: detector noise traces



Dual Critics GAN Preliminary Results

14

On synthetic data with detector noise (Am-241, 60keV peak):

• Trained on synthetic data with shorter pulse length due to GPU limitations
• Similar MSE as Noise2Noise denoising autoencoder

• GPU intensive to train since model contains multiple neural networks
• Difficult and time-consuming to train and tune
• Training on real data (Co-60 or Am-241) yields worse results



Other Methods
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CycleGAN [5]:

• Good performance when trained and tested on synthetic data
• Does not require paired clean and noisy pulses for training – more realistic training condition

• However, not a good candidate for training without ground truth/clean pulses
• Unstable and time-consuming to train

Denoising Diffusion Probabilistic Models [6, 7]:
(Work in progress)

• The diffusion model is a newer generative model that has recently been shown to often outperform 
GAN 

• More stable to train and less GPU intensive than GAN

• Shows promise in generating realistic detector pulses – could be complementary to detector pulse 
shape simulation

[8]



Outlook

• Developing a denoising method for HPGe detectors that does not rely on ground truth for training

• Noise2Noise is the most promising method we have tested so far

o Could be further improved using a different neural network, e.g. U-Net, instead of autoencoder

o Currently testing on LEGEND data; will be trained with LEGEND data as well

o Applicable to other detector technologies – shown excellent performance on spherical proportional counters and 

bubble chambers 

• GAN might not be the best candidate for denoising

• Exploring diffusion model for both denoising and pulse shape simulation
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