
Contrastive Learning for Robust Representations of
Neutrino Data

Alex Wilkinson, Radi Radev, Saul Alonso-Monsalve

Neutrino Physics and Machine Learning 2024

27 June 2024



ML with a Data-MC Discrepancy

I HEP simulation provides detailed training data for ML

I But the simulation will never be perfect, ultimately data and MC will come from
different distributions due to mismodelling

I Some unknowns in the model will be parametrised
→ Design models that are invariant to these parameters where possible
→ Characterise dependence on these parameters where it’s not

I There will be some ”unknown unknowns”
→ Can still look for ways data can be used to mitigate the effect of this on our models

Can recent advances in computer vision help address these problems?
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Self-Supervised Learning in Vision

I Computer vision tasks often have a large quantity of
unlabelled data and much fewer labelled samples

I Self-supervised learning methods are used to train a
model on the unlabelled data
→ These model can then be finetuned using the small labelled

sample
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Mitigating Bias with Contrastive Learning

I We try to adapt vision’s self-supervised paradigm to mitigate the effect of a data-MC
discrepancy in neutrino physics

I Look at how a pretraining stage using contrastive learning can be used to generate
representations of neutrino data that are robust to mismodelling of the detector
simulation

I Our method is based on the SimCLR framework
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https://arxiv.org/abs/2002.05709


Contrastive Learning Recipe

I Ingredients:

→ A set of augmentations T
→ An encoder network f (·) - this extracts the

representation h we will use for
downstream tasks

→ A projection head g (·) - an MLP to map
the representations to the space where a
contrastive loss is applied

→ A contrastive loss function

x

x̃i x̃j

t ∼ T t ′ ∼ T

hi hj

f (·) f (·)

zi zj

g (·) g (·)

Maximise similarity
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A Contrastive Loss

I In a minibatch of N unique examples, each gets augmented twice generating for each
example, one positive pair and 2 (N − 1) negative pairs

I A contrastive loss is constructed that maximises the cosine similarity of positive pairs and
minimises that of negative pairs

z1 z4 z2 z5 z3 z6

t ∈ T

g (f (·))

− − + − −
− − − + −
− − − − +

+ − − − −
− + − − −
− − + − −

cosine similarity

L =
1

Nrow

∑
i∈rows

− log

 exp (sim (zi , z+) /τ)∑
k∈−,+

exp (sim (zi , zk) /τ)


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Using the Representation

I This self-supervised training provides a powerful representation of the data through
the frozen weights of the encoder network: f (·)^

I We can use this representation for downstream tasks by finetuning with labelled data

cat

dog
h Classification

f (·)^
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Applications to Neutrino Experiments

Can we learn representations that are invariant to known detector systematics?
Use throws of detector systematics as augmentations for the contrastive learning

Can we use unlabelled data to learn representations that are invariant to
”unknown unknowns” caused by mismodelling of the detector simulation?
Use data in the contrastive learning stage and labelled simulation for the finetuning
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ND-LAr Simulation

I We use single particle classification of DUNE ND-LAr simulation to study these
questions
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Contrastive Model

I ND-LAr input is extremely sparse,
models made using the sparse library
MinkowskiEngine

I Encoder network is a sparse
submanifold CNN based on the
ConvNeXt v2 architecture

I The learned representation, h, has
dimension 768

depth-wise 7x7, C

conv3d 1x1, 4C

conv3d 1x1, C

LayerNorm

GELU 
LayerNorm 

Modified ConvNeXt Block

ConvNeXt v2 Block

Downsample

ConvNeXt v2 Block

conv3d 

Global Max Pool 

MLP or Linear

Full architecture

4x
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https://github.com/NVIDIA/MinkowskiEngine
https://arxiv.org/abs/2301.00808


Augmentations

Identity Rotate Drop

Noise Wiggle

Apply composition of
3 selected at random
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Training for Invariance to Systematics

Can we learn representations that are invariant to known detector systematics?

I Use systematic throws as augmentations for the contrastive learning
→ Compare to using these throws as augmentations in training of a classifier

I Look at uncertainties in LAr
properties

I Simulate each sample with 10
random throws to make a set of
augmentations

E Field [0.45, 0.55] kV/cm
Transverse Diffusion [4e-6, 14e-6] cm2/µs

Electron Lifetime [500, 5000] µs
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Results - Accuracies
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Negative Result!

I Some things that could improve the contrastive learning
→ Stronger detector throws
→ Incorporate class information in the contrastive loss function

− ∼ + − ∼
− − − + −
∼ − ∼ − +

+ − ∼ − ∼
− + − − −
∼ − + ∼ −

I The bottom line: Known detector systematics should be included as augmentations
in training, contrastive learning approaches probably wont help here
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Contrastive Domain Adaptation

Can we use unlabelled data to learn representations that are invariant to
”unknown unknowns” caused by mismodelling of the detector simulation?

I Try using unlabelled data in the contrastive stage to learn a strong representation from the
data rather than the simulation distribution
→ Pretrain on unlabelled data
→ Finetune the learned representation using labelled simulation

I By pretraining on the correct distribution we hope to mitigate the risk our model being
sensitive to the effects of mismodelling

I Using the same encoder network architecture, compare with:
→ Classifier trained with the same augmentations used in the contrastive stage
→ Domain-adversarial neural network (DANN) — tries to enforce domain-invariant features

by classifying the domain as well as the label

Alex Wilkinson Contrastive Learning for Robust Representations of Neutrino Data 14 / 20



Electronics Throws

I Labelled simulation→ Nominal

I Unlabelled data→ Throws

Parameter Throw 1σ

Gain 2%
Buffer Risetime 10%

Common-mode Voltage 2%
Reference Voltage 2%

Pedestal Voltage 20%
Reset Noise 10%

Uncorrelated Noise 10%
Discriminator Noise 10%

Discriminator Threshold 2%
...

Nominal

Throw 1

Throw 2

...
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Results - Accuracies
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Results - Confusion Matrices
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Future Work

I Improvements to contrastive model to make nominal accuracy more competitive with
classifier
→ Different representation shapes and sizes
→ Incorporate class information into contrastive training

I Testing with different systematics and on different tasks

I Applying to new datasets and detector technology. . .
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Segmented Scintillator Cube Detector

I Starting work on applying contrastive learning to simulation of a magnetised plastic
scintillator detector made of optically-isolated cubes (zenodo)
→ The simulation includes crosstalk — we vary this to study mismodelling of the detector
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https://zenodo.org/records/10998285


Summary

I Developed a contrastive learning framework for tackling data-MC discrepancy in
neutrino physics

I Studied the framework by varying the detector simulation for single-particle LArTPC
data
→ Promising results when applied to domain adaptation
→ Less promising when applied to learning explicit detector systematics

I Potential for contrastive learning to mitigate data-MC discrepancy is demonstrated —
we need to do more studies to know!
→ Improve discriminative power of the representation
→ Look at new datasets and systematics
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Backup
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DANN
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DANN Confusion Matrices
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Some UMAPS

Classifier Nominal Classifier Throw Contrastive Pretraining Throw DANN Throw
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muon
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proton

Throw 2
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