Contrastive Learning for Robust Representations of Neutrino Data

Alex Wilkinson, Radi Radev, Saul Alonso-Monsalve

Neutrino Physics and Machine Learning 2024

27 June 2024

ML with a Data-MC Discrepancy

- \blacktriangleright HEP simulation provides detailed training data for ML
- \blacktriangleright But the simulation will never be perfect, ultimately data and MC will come from different distributions due to mismodelling
- \triangleright Some unknowns in the model will be parametrised
	- \rightarrow Design models that are invariant to these parameters where possible
	- \rightarrow Characterise dependence on these parameters where it's not
- \blacktriangleright There will be some "unknown unknowns"
	- \rightarrow Can still look for ways data can be used to mitigate the effect of this on our models

Can recent advances in computer vision help address these problems?

Self-Supervised Learning in Vision

- \triangleright Computer vision tasks often have a large quantity of unlabelled data and much fewer labelled samples
- \triangleright Self-supervised learning methods are used to train a model on the unlabelled data
	- \rightarrow These model can then be finetuned using the small labelled sample

 \blacksquare

Illustration of MAE - vision foundation model

Mitigating Bias with Contrastive Learning

- \blacktriangleright We try to adapt vision's self-supervised paradigm to mitigate the effect of a data-MC discrepancy in neutrino physics
- \blacktriangleright Look at how a pretraining stage using contrastive learning can be used to generate representations of neutrino data that are robust to mismodelling of the detector simulation
- \triangleright Our method is based on the [SimCLR](https://arxiv.org/abs/2002.05709) framework

A Simple Framework for Contrastive Learning of Visual Representations

Ting Chen¹ Simon Kornblith¹ Mohammad Norouzi¹ Geoffrey Hinton¹

 \blacktriangleright Ingredients:

AUCI

- \blacktriangleright Ingredients:
	- \rightarrow A set of augmentations $\mathcal T$

\blacktriangleright Ingredients:

- \rightarrow A set of augmentations $\mathcal T$
- \rightarrow An encoder network $f(.)$ this extracts the representation **h** we will use for downstream tasks

 \blacksquare

 \blacktriangleright Ingredients:

- \rightarrow A set of augmentations $\mathcal T$
- \rightarrow An encoder network $f(.)$ this extracts the representation **h** we will use for downstream tasks
- \rightarrow A projection head $g(\cdot)$ an MLP to map the representations to the space where a contrastive loss is applied

 \triangle III

- \blacktriangleright Ingredients:
	- \rightarrow A set of augmentations $\mathcal T$
	- \rightarrow An encoder network $f(.)$ this extracts the representation **h** we will use for downstream tasks
	- \rightarrow A projection head $g(\cdot)$ an MLP to map the representations to the space where a contrastive loss is applied
	- \rightarrow A contrastive loss function

 \blacksquare

A Contrastive Loss

In a minibatch of N unique examples, each gets augmented twice generating for each example, one positive pair and $2(N - 1)$ negative pairs

A Contrastive Loss

- In a minibatch of N unique examples, each gets augmented twice generating for each example, one positive pair and $2(N - 1)$ negative pairs
- \triangleright A contrastive loss is constructed that maximises the cosine similarity of positive pairs and minimises that of negative pairs

Using the Representation

- \blacktriangleright This self-supervised training provides a powerful representation of the data through the frozen weights of the encoder network: $f\left(\cdot\right)^{\frac{4k}{k}}$
- \blacktriangleright We can use this representation for downstream tasks by finetuning with labelled data

 \triangle UC

Can we learn representations that are invariant to known detector systematics? Use throws of detector systematics as augmentations for the contrastive learning

Can we use unlabelled data to learn representations that are invariant to "unknown unknowns" caused by mismodelling of the detector simulation? Use data in the contrastive learning stage and labelled simulation for the finetuning

ND-LAr Simulation

 \triangleright We use single particle classification of DUNE ND-LAr simulation to study these questions

AUCL

Contrastive Model

- \triangleright ND-LAr input is extremely sparse, models made using the sparse library **[MinkowskiEngine](https://github.com/NVIDIA/MinkowskiEngine)**
- \blacktriangleright Encoder network is a sparse submanifold CNN based on the [ConvNeXt v2](https://arxiv.org/abs/2301.00808) architecture
- ▶ The learned representation, **h**, has dimension 768

Full architecture

AUCI

Augmentations

AUCL

Training for Invariance to Systematics

Can we learn representations that are invariant to known detector systematics?

- \blacktriangleright Use systematic throws as augmentations for the contrastive learning \rightarrow Compare to using these throws as augmentations in training of a classifier
- I Look at uncertainties in LAr properties
- \triangleright Simulate each sample with 10 random throws to make a set of augmentations

Results - Accuracies

Negative Result!

- \triangleright Some things that could improve the contrastive learning
	- \rightarrow Stronger detector throws
	- \rightarrow Incorporate class information in the contrastive loss function

 \blacktriangleright The bottom line: Known detector systematics should be included as augmentations in training, contrastive learning approaches probably wont help here

AUCL

Contrastive Domain Adaptation

Can we use unlabelled data to learn representations that are invariant to "unknown unknowns" caused by mismodelling of the detector simulation?

- \blacktriangleright Try using unlabelled data in the contrastive stage to learn a strong representation from the data rather than the simulation distribution
	- \rightarrow Pretrain on unlabelled data
	- \rightarrow Finetune the learned representation using labelled simulation
- \triangleright By pretraining on the correct distribution we hope to mitigate the risk our model being sensitive to the effects of mismodelling
- \triangleright Using the same encoder network architecture, compare with:
	- \rightarrow Classifier trained with the same augmentations used in the contrastive stage
	- \rightarrow Domain-adversarial neural network (DANN) tries to enforce domain-invariant features by classifying the domain as well as the label

 \triangle UC

Electronics Throws

- \blacktriangleright Labelled simulation \rightarrow Nominal
- \blacktriangleright Unlabelled data \rightarrow Throws

Ĭ.

Results - Accuracies

Results - Confusion Matrices

Data Domain is Nominal Data Domain is Throw 2

 \blacksquare

Nominal Classifier

Contrastive Pretraining

Alex Wilkinson Contrastive Learning for Robust Representations of Neutrino Data 17/20 17/20

- \blacktriangleright Improvements to contrastive model to make nominal accuracy more competitive with classifier
	- \rightarrow Different representation shapes and sizes
	- \rightarrow Incorporate class information into contrastive training
- \blacktriangleright Testing with different systematics and on different tasks
- \blacktriangleright Applying to new datasets and detector technology...

AUCI

Segmented Scintillator Cube Detector

- $\blacksquare \blacksquare$
- \triangleright Starting work on applying contrastive learning to simulation of a magnetised plastic scintillator detector made of optically-isolated cubes [\(zenodo\)](https://zenodo.org/records/10998285)
	- The simulation includes crosstalk we vary this to study mismodelling of the detector

Summary

 \triangle UC

- \blacktriangleright Developed a contrastive learning framework for tackling data-MC discrepancy in neutrino physics
- \triangleright Studied the framework by varying the detector simulation for single-particle LArTPC data
	- \rightarrow Promising results when applied to domain adaptation
	- \rightarrow Less promising when applied to learning explicit detector systematics
- \triangleright Potential for contrastive learning to mitigate data-MC discrepancy is demonstrated we need to do more studies to know!
	- \rightarrow Improve discriminative power of the representation
	- \rightarrow Look at new datasets and systematics

Backup

DANN

DANN Confusion Matrices

AUCL

Some UMAPS

Throw 2

AUCL