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Motivation
• NMO sensitivity can be enhanced by studying neutrino 

oscillations in GeV region


• To study  oscillations one needs to reconstruct 
neutrinos’ direction/energy/flavor (particle type)


• Different neutrino flavor exhibits different oscillation 
probabilities between two neutrino mass order


• Signal Charged-Current (CC) vs Background Neutral-
Current (NC)


• Muon (anti)neutrinos vs electron (anti)neutrinos 


• Neutrinos vs Antineutrinos 


• We demonstrate the capability of our ML approach in 
performing PID for atmospheric neutrinos
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Scintillation light at the detector

• Light seen by PMTs of an LS detector is a superposition of light 
generated from many points along the track


• Shape of light curve received by each PMT depends on :


• Angle w.r.t. track direction 


• Track starting and stopping position


• Particle type - different dE/dx


• Typical LS detectors are designed for low-energy neutrinos - 
 oscillations measurements using LS detectors is 

challenging 
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Methodology
Directly feeding full waveform from all PMTs are computationally expensive - features that reflects 
the waveforms are extracted to reduce data volume


• FHT: time of first photon arriving at a PMT


• Slope: average slope of curve at the first 4 ns


• Peak time, peak charge, total charge


• Other features such as median time and four moments (mean, std, skewness, kurtosis) 

PMT waveforms Pictures of PMT features
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Methodology

• The output of the ML models is a set of scores associated for each category for a given event


• By default, the ML models will assign the category with the highest score for each event


• 2-step approach: 3-label classification (NC, , ) followed by  classification,  expect 
the ML models can each learn to specifically perform one classification tasks, either 3-label or 
2-label
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Utilising neutron capture information

• The difference between each CC interactions are also reflected 
by the final state hadrons from  interactions


• Final state neutrons are captured by hydrogens in LS and emit a 
2.2 MeV in ~ 200 µs, create delayed triggers after primary 
interactions


• Such events can be selected from delayed trigger with high 
efficiency


• The difference between  interactions can also be reflected by 
the hadronic energy fraction variable , 
reflected by observables such as neutron multiplicity


• Expect to provide additional power especially for  
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1. Point cloud-based model: PointNet++, DGCNN 

• Features extracted from primary triggers are fed into the PointNet++ 


• For neutron capture candidates, taking 3D point clouds [x, y, z] as inputs to a separate 
DGCNN model, capable of recovering neighborhood topology of point clouds with edge 
information


• Preserves multiplicity and spacial distributions of neutrons, minimise the information loss

N ×

Two strategies (1)
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• DGCNN is used to extract features from the reconstructed neutron information, 
concatenate with PointNet++ model with a FC layer for final output

Two strategies (1)
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Two strategies (2)

2. Spherical CNN: DeepSphere  

• Graph-CNN: developed for processing spherical data originally 
developed for cosmology studies


• Maintain rotation covariance, Avoid distortions caused by 
projection to a planar surface

•

• Use Healpix sampling to define vertices


• Equally divide the sphere into 12 parts


• Further divide each part into  parts ( )


• Chose  total number of pixels: 12288


• If more than one PMTs are in one pixel, info is 
merged

Nside Nside = 2n

Nside = 32
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Two strategies (2)

• Multiple neutron-candidate triggers are merged into one 


• FHT and nPE are extracted and feed into model together 
with primary trigger features
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Evaluating model performance 

• AUC ROC is used to assess models’ performances (optimisation of signal efficiency/background efficiency)


• Does not depend on the choice of score cut


• Not affected by class-imbalance in the dataset
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• Training sample consist of ~25k events for all 5 categories considered ( -CC, -CC, -CC, -CC, 
NC), with flat neutrino energy spectrum [0, 20] GeV to avoid bias in model training


• Testing sample consist of ~5k events for all 5 categories
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Results

• We observe the AUC scores as a function of visible energy


• Results are consistent between the two strategies for all classification tasks


• For 3-label classification, AUC scores are calculated for each label (“one-vs-rest”) 
and averaged to get the mean AUC score for each energy bin

Identification of atmospheric neutrino's flavor in JUNO with machine learning | Wing Yan Ma | 2024.06.25

3-label classification  classificationνμ/ν̄μ  classificationνe/ν̄e

Work in progress Work in progress

Work in progress



Results

• Combining output scores from each model gives 5-label PID → can be compared 
with a model which directly performs a 5-label classification 


• Agreement suggest that the models considered are capable of directly classifying 
the 5 categories
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Selected sample

• Efficiencies and purities can be tuned to obtain an optimised sample for NMO analysis
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• A novel method of reconstructing atmospheric neutrino 
events for LS detector is presented


• Two strategies with different ML models are developed to 
validate the reconstruction method 


• Using JUNO MC samples, variables that are crucial to 
physics analyses such as direction, energy, particle 
identification of atmospheric neutrinos can be 
reconstructed with good resolution

Summary
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Atmospheric Neutrinos

• Large flux of atmospheric neutrinos ( ) produced by cosmic 
ray interactions


• Isotropic with different baseline ( ) and energy ( )


• Natural source of neutrinos in GeV region
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