Wing Yan Ma[1], Fanrui Zeng[1], Jiaxi Liu[2], Xinhai He[2], Zhen Liu[2], Wuming Luo[2], Hongye Duyang[1], Teng Li^[1], Yongpeng Zhang^[2] [1] Shandong University [2] Institute of High Energy Physics, CAS

NPML 2024 @ Zurich 2024/06/25

Identification of atmospheric neutrino's flavor in JUNO with machine learning

Outline

- Motivation
- Methodology
- Strategies and different ML models considered
- Model performance
- Summary

Motivation

- NMO sensitivity can be enhanced by studying neutrino oscillations in GeV region
- To study ν_{atm} oscillations one needs to reconstruct neutrinos' direction/energy/**flavor (particle type)**
- Different neutrino flavor exhibits different oscillation probabilities between two neutrino mass order
	- Signal Charged-Current (CC) vs Background Neutral-Current (NC)
	- Muon (anti)neutrinos vs electron (anti)neutrinos
	- Neutrinos vs Antineutrinos $\nu/\bar{\nu}$
- We demonstrate the capability of our ML approach in performing PID for atmospheric neutrinos

Scintillation light at the detector

- Light seen by PMTs of an LS detector is a superposition of light generated from many points along the track
- Shape of light curve received by each PMT depends on :
	- Angle w.r.t. track direction *θ*
	- Track starting and stopping position
	- Particle type different dE/dx
- Typical LS detectors are designed for low-energy neutrinos **oscillations measurements using LS detectors is** *νatm* **challenging**

Methodology

Directly feeding full waveform from all PMTs are computationally expensive - features that reflects the waveforms are extracted to reduce data volume

- FHT: time of first photon arriving at a PMT
- Slope: average slope of curve at the first 4 ns
- Peak time, peak charge, total charge
-

Methodology

- The output of the ML models is a set of scores associated for each category for a given event
- By default, the ML models will assign the category with the highest score for each event
- 2-label

Identification of atmospheric neutrino's flavor in JUNO with machine learning | Wing Yan Ma | 2024.06.25

• 2-step approach: 3-label classification (NC, $\overline{\nu}'_{\mu}$, $\overline{\nu}'_{e}$) followed by $\nu/\bar{\nu}$ classification, expect the ML models can each learn to specifically perform one classification tasks, either 3-label or (−) *ν μ* (−) $\nu^{'}{}_{e}$) followed by $\nu^{}/\bar{\nu}$

Utilising neutron capture information

- The difference between each CC interactions are also reflected by the final state hadrons from ν interactions
- Final state neutrons are captured by hydrogens in LS and emit a 2.2 MeV in ~ 200 µs, create delayed triggers after primary interactions
- Such events can be selected from delayed trigger with high efficiency
- The difference between $\nu/\bar{\nu}$ interactions can also be reflected by the hadronic energy fraction variable $Y_{ratio} = (E_\nu - E_{lepton})/E_\nu,$ reflected by observables such as neutron multiplicity
- Expect to provide additional power especially for $\nu_e/\bar{\nu}_e$

Identification of atmospheric neutrino's flavor in JUNO with machine learning | Wing Yan Ma | 2024.06.25

E.g. CCQE interactions

1. Point cloud-based model: PointNet++, DGCNN

- Features extracted from primary triggers are fed into the PointNet++
- For neutron capture candidates, taking 3D point clouds $N \times [\mathsf{x}, \mathsf{y}, \mathsf{z}]$ as inputs to a separate DGCNN model, capable of recovering neighborhood topology of point clouds with edge information
- Preserves multiplicity and spacial distributions of neutrons, minimise the information loss

Two strategies (1)

• DGCNN is used to extract features from the reconstructed neutron information, concatenate with PointNet++ model with a FC layer for final output

Two strategies (1)

Two strategies (2)

2. Spherical CNN: DeepSphere

- Graph-CNN: developed for processing spherical data originally developed for cosmology studies
- Maintain rotation covariance, Avoid distortions caused by projection to a planar surface

- Equally divide the sphere into 12 parts
- Further divide each part into N_{side} parts ($N_{side} = 2^n$)
- Chose $N_{side} = 32$ total number of pixels: 12288
- **• If more than one PMTs are in one pixel, info is merged**

•

• Use Healpix sampling to define vertices

Two strategies (2)

- Multiple neutron-candidate triggers are merged into one
- FHT and nPE are extracted and feed into model together with primary trigger features

Evaluating model performance

- Training sample consist of ~25k events for all 5 categories considered (ν_μ -CC, $\bar\nu_\mu$ -CC, ν_e -CC, $\bar\nu_e$ -CC, NC), with flat neutrino energy spectrum [0, 20] GeV to avoid bias in model training
- Testing sample consist of ~5k events for all 5 categories

- - Does not depend on the choice of score cut
	- Not affected by class-imbalance in the dataset

• **AUC ROC** is used to assess models' performances (optimisation of signal efficiency/background efficiency)

Results

- We observe the AUC scores as a function of visible energy
- Results are consistent between the two strategies for all classification tasks
- For 3-label classification, AUC scores are calculated for each label ("one-vs-rest") and averaged to get the mean AUC score for each energy bin

Results

- with a model which directly performs a 5-label classification
- the 5 categories

• Agreement suggest that the models considered are capable of directly classifying

Identification of atmospheric neutrino's flavor in JUNO with machine learning | Wing Yan Ma | 2024.06.25

• Combining output scores from each model gives 5-label $PID \rightarrow can$ be compared

Selected sample

• Efficiencies and purities can be tuned to obtain an optimised sample for NMO analysis

- A novel method of reconstructing atmospheric neutrino events for LS detector is presented
- Two strategies with different ML models are developed to validate the reconstruction method
- Using JUNO MC samples, variables that are crucial to physics analyses such as **direction, energy, particle identification** of atmospheric neutrinos can be reconstructed with good resolution

Summary

Backup

Supernova v 5-7k in 10s for 10kpc

Solar_v $(10s-1000s)/day$

36 GW, 53 km

reactor v, 60/day **Bkg: 3.8/day**

Atmospheric Neutrinos

- Large flux of atmospheric neutrinos (ν_{atm}) produced by cosmic ray interactions
- Isotropic with different baseline (L) and energy (E)
- Natural source of neutrinos in GeV region

