A novel approach in the Pandora multi-algorithm reconstruction to tackle challenging topologies at DUNE

Maria Brigida Brunetti on behalf of the DUNE Collaboration Neutrino Physics and Machine Learning 2024, 27 June 2024, ETH Zurich

The Deep Underground Neutrino Experiment

- Long baseline (1285 km) oscillation experiment
- 2 MW → 2.4 MW beam at Fermilab (most intense v beam in the world)
 - Wide-band energy
- Liquid argon time projection chamber technology
- Near detector at Fermilab
- Four 17 kton Far Detector modules at SURF
- 1.5 km underground location

High-precision measurements of neutrino mixing and oscillation fundamental parameters (including CPV)

> Astrophysical neutrinos Supernova and solar neutrinos

> > Probe new physics including nucleon decay

The Horizontal and Vertical Drift Far Detector

TPC size: 12.0m × 14.0m × 58.2 m. Drift length: 3.5 m

- Modular wire-based charge readout
- 4 drift volumes defined by 5 arrays of anode and cathode planes

- PCB-based charge readout
- 2 drift volumes defined by a cathode plane, and 2 PCB-based anode planes

Liquid Argon Time Projection Chamber (LArTPC)

- Use scintillation and ionization to find 3D position of particles and interactions
- Drift charge recorded by several readout planes, with different orientations, forming images
- Light collected by photon detection system

LArTPC images

Pandora reconstruction multi-algorithm approach

- Reconstruction framework in use at all neutrino LArTPC experiments, and applied at linear colliders
- Many logical steps (> 100 algorithms) to go from input hits to 3D hierarchies
- Build different techniques, including deep learning, and physics and detector knowledge in the pattern recognition algorithms

Machine learning in Pandora

- Very diverse event topologies motivate exploiting different techniques
- Broad use of machine learning, and especially Deep Learning (DL)

Highlights:

- Neutrino interaction vertex finding in DUNE FD (see <u>Andy Chappell's talk</u>)
- Neutrino interaction vertex finding in the DUNE ND (AIDAinnova)
- Neutrino interaction vertex finding and background rejection in low-energy neutrino signatures
- Hierarchy building (see <u>Isobel Mawby's talk</u>)
- New reclustering approaches (this talk)

Reclustering approach

- Overlapping showers are challenging to reconstruct, and impact DUNE physics goals
 - Showers from π^0 mistaken as single electron are background in appearance analyses
- Tackle via new reclustering approach (STFC-funded project)
- A similar approach was successfully used at <u>linear colliders</u>
- Approach can be applied to other topologies, e.g. including tracks

Clustering 3D hits with Graph Neural Networks

- We are investigating DL techniques, such as transformer networks, to identify target topologies
- In this presentation, will assume that target topologies have already been identified
- Start from 3D hits, aim at proposing new possible clustering outcomes

Graph Neural Networks (GNNs) motivation

- Straightforward representation of a 3D cluster of hits as a graph:
 - One 3D cluster = 1 graph
 - Nodes = hits
 - Node features = hit *x*, *y*, *z*, charge
- Can imagine pairs of hits to be connected by a positive edge if most energy was deposited by the same true particle

Grey line = false edge Black line = true edge

Leverage GNN message-passing so that local features know about broader cluster structure

- For each layer, aggregate nearby nodes features to node under consideration (e.g. via averaging)
- Only consider nearby hits within radius, e.g. 10 cm
- Stacking together many layers means concatenating features from further away

Leverage GNN message-passing so that local features know about broader cluster structure

- For each layer, aggregate nearby nodes features to node under consideration (e.g. via averaging)
- Only consider nearby hits within radius, e.g. 10 cm
- Stacking together many layers means concatenating features from further away

Leverage GNN message-passing so that local features know about broader cluster structure

- For each layer, aggregate nearby nodes features to node under consideration (e.g. via averaging)
- Only consider nearby hits within radius, e.g. 10 cm
- Stacking together many layers means concatenating features from further away

Leverage GNN message-passing so that local features know about broader cluster structure

- For each layer, aggregate nearby nodes features to node under consideration (e.g. via averaging)
- Only consider nearby hits within radius, e.g. 10 cm
- Stacking together many layers means concatenating features from further away

Two GNN-based approaches for clustering

Edge prediction GNN performance example

 \rightarrow 1M edges

positive and negative)

(equal number

Training and testing samples

- About 130 shower particles
- Number of hits > 400 and < 700
- with > 30% contamination
- 90%-10% training-testing split

Architecture

• 10 SAGEConv layers, 1 predictor layer, 16 hidden channels

Predicted edge scores

- 0.5 cut \rightarrow typical prediction accuracy around 75-80%
- Network could be tuned for further separation
- However, a harder cut on scores may already give good performance in clustering

How to use the predicted scores to guide 3D hit clustering?

Predicted edge scores

Blue distribution: true positive edges Red distribution: true negative edges

How to use the GNN output

• Four different outcomes

- There will be ambiguities as the network output is not perfect
- B is predicted to be strongly connected to A and C, but A and C are not predicted to be strongly connected together

A	A C	A	С	A		С
В	В	В			В	

GNN output in clustering algorithms

• Explored the idea of an "average connection score" to quantify how strongly connected each hit is to its local neighbourood.

Average connection score = (sum of edge scores above threshold within 10 cm) (for each hit) (# neighbouring hits within 10 cm)

Hope to show splitting points/regions, or differences between particles \rightarrow Use to split cluster

Merged particles score examples

Average connection score

These topologies are "track-like". Scores may be less useful in more shower-like topologies

Summary

- LArTPCs yield very high resolution images of particle interactions
- **State-of-the-art reconstruction** crucial to achieve DUNE physics goals
- Some topologies, such as overlapping showers, pose special challenges
- **Pandora's multi-algorithm approach** is well placed to tackle these challenges
- A reclustering paradigm, under development in Pandora, allows exploiting multiple techniques, including deep learning
- Exploring using GNNs, based on graph interpretation of 3D particles
- Initial training of network to predict true connections between hits
- Exploring use of output scores in new clustering algorithms
- In parallel, exploring an unsupervised clustering approach