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The Deep Underground Neutrino Experiment

• Long baseline (1285 km) oscillation experiment
• 2 MW à 2.4 MW beam at Fermilab 
       (most intense ! beam in the world)

• Wide-band energy
• Liquid argon time projection chamber technology 
• Near detector at Fermilab
• Four 17 kton Far Detector modules at SURF
• 1.5 km underground location
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High-precision measurements 
of neutrino mixing and oscillation 

fundamental parameters (including CPV)

 
Astrophysical neutrinos 

Supernova and solar neutrinos 

Probe new physics 
including nucleon decay 



The Horizontal and Vertical Drift Far Detector
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• Modular wire-based charge readout 
• 4 drift volumes defined by 5 arrays of 

anode and cathode planes 

• PCB-based charge readout
•  2 drift volumes defined by a cathode 

plane, and 2 PCB-based anode planes

TPC size: 12.0m × 14.0m × 58.2 m. Drift length: 3.5 m 



Liquid Argon Time Projection Chamber (LArTPC)

• Use scintillation and ionization to 
find 3D position of particles and 
interactions

• Drift charge recorded by several 
readout planes, with different 
orientations, forming images

• Light collected by photon 
detection system
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Readout planes



LArTPC images
Exquisite tracking and calorimetry capability

Signal processing and hit 
finding steps to go from 
raw images to pattern 

recognition inputs
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3 x 2D collections of hits

hit = energy measurement 
on a given wire, at a given 

time



Pandora reconstruction multi-algorithm approach
• Reconstruction framework in use at all neutrino LArTPC experiments, and applied at linear colliders

• Many logical steps (> 100 algorithms) to go from input hits to 3D hierarchies

• Build different techniques, including deep learning, and physics and detector knowledge in the pattern 
recognition algorithms 

2D pattern recognition

2D → 3D matching

Vertex finding

Hierarchy building

Track/shower ID

5



Machine learning in Pandora
• Very diverse event topologies motivate exploiting different techniques
• Broad use of machine learning, and especially Deep Learning (DL)

30	MeV
'! CC CEvNS

26.8	GeV
'" CC DIS

Highlights:

• Neutrino interaction vertex finding in DUNE 
FD (see Andy Chappell’s talk)

• Neutrino interaction vertex finding in the 
DUNE ND (AIDAinnova)

• Neutrino interaction vertex finding and 
background rejection in low-energy 
neutrino signatures

• Hierarchy building (see Isobel Mawby’s talk)

• New reclustering approaches (this talk)

10cm
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Reclustering approach

Did we make a 
mistake?

Redistribute 3D hits

Does something look 
wrong? Is a better 
reconstruction 
outcome based on the 
3D hits possible?

Pick best 
outcome

Run multiple algorithms proposing 
alternative clustering of the hits

Consider particles at 
the end of the 
reconstruction chain
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• Overlapping showers are challenging to reconstruct, and impact DUNE physics goals
• Showers from  "! mistaken as single electron are background in appearance analyses

• Tackle via new reclustering approach (STFC-funded project)

• A similar approach was successfully used at linear colliders

• Approach can be applied to other topologies, e.g. including tracks

https://www.sciencedirect.com/science/article/abs/pii/S0168900212011734?via%3Dihub


Clustering 3D hits with Graph Neural Networks
• We are investigating DL techniques, such as transformer networks, to identify target topologies
• In this presentation, will assume that target topologies have already been identified

• Start from 3D hits, aim at proposing new possible clustering outcomes

Grey line = false edge
Black line = true edge

Graph Neural Networks (GNNs) motivation

• Straightforward representation of a 3D 
cluster of hits as a graph:
• One 3D cluster = 1 graph
• Nodes = hits
• Node features = hit x, y, z, charge

• Can imagine pairs of hits to be connected 
by a positive edge if most energy was 
deposited by the same true particle
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Message-passing layers

Leverage GNN message-passing so that local features 
know about  broader cluster structure

Using GraphSAGE architecture

• For each layer, aggregate nearby nodes features to 
node under consideration (e.g. via averaging)

• Only consider nearby hits within radius, e.g. 10 cm
• Stacking together many layers means 

concatenating features from further away
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https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.models.GraphSAGE.html?highlight=graphsage
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A

Two GNN-based approaches for clustering
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Message-passing layers

Linear predictor layer
Linear transformation + 

softmax

Output:  Per-hit-pair predicted edge score  Per-hit cluster assignment

Post-processing necessary? Yes     No

Loss function: Binary cross-entropy      Non-task specific minCUTpool losses

A. Supervised edge prediction:
Find all pairs of hits
that are truly connected
(this talk)

B. Unsupervised clustering
Assign a cluster label to each hit
Future development

https://arxiv.org/abs/1907.00481


Training and testing samples
• About 130 shower particles
• Number of hits > 400 and < 700
• with > 30% contamination
• 90%-10% training-testing split

Architecture
• 10 SAGEConv layers, 1 predictor layer, 16 hidden channels

Predicted edge scores
• 0.5 cut à typical prediction accuracy around 75-80%
• Network could be tuned for further separation

Edge prediction GNN performance example
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à 1M edges
(equal number 
positive and negative)

• However, a harder cut on scores may already give good performance in clustering

How to use the predicted scores to guide 3D hit clustering?

Blue distribution: true positive edges
Red distribution: true negative edges

Predicted edge scores

DUNE work in progress



How to use the GNN output

A
C

B

• There will be ambiguities as the network 
output is not perfect

• B is predicted to be strongly connected to A 
and C, but A and C are not predicted to be 
strongly connected together

• Four different outcomes

A
C

B

A
C

B

A
C

B

A
C

B
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GNN output in clustering algorithms
• Explored the idea of an “average connection score” to quantify how strongly 

connected each hit is to its local neighbourood.

  (sum of edge scores above threshold within 10 cm) 

(# neighbouring hits within 10 cm)
Average connection score =
            (for each hit)

0.92
0.97

0.87
0.91

0.7

0.13
0.97

0.22

Hope to show splitting points/regions, or differences between particles
→ Use to split cluster
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Merged particles score examples
Average connection score          X-Y projection

Colour code: Colour code:
 True MC ID           Average connection score ex. 1

ex. 2

These topologies are 
“track-like”. Scores may 
be less useful in more 
shower-like topologies
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DUNE work in progress

DUNE work in progress

DUNE work in progress DUNE work in progress

DUNE work in progressDUNE work in progress



Summary
• LArTPCs yield very high resolution images of particle interactions

• State-of-the-art reconstruction crucial to achieve DUNE physics goals

• Some topologies, such as overlapping showers, pose special challenges 

• Pandora’s multi-algorithm approach is well placed to tackle these challenges

• A reclustering paradigm, under development in Pandora, allows exploiting 
multiple techniques, including deep learning

• Exploring using GNNs, based on graph interpretation of 3D particles

• Initial training of network to predict true connections between hits

• Exploring use of output scores in new clustering algorithms

• In parallel, exploring an unsupervised clustering approach 15


