

Transformer Network for Event/Particle Identification and Interpretability at NOvA

Jianming Bian

University of California, Irvine

NPML 2024, ETH Zurich, Switzerland

NuMI Off-Axis v_e Appearance Experiment (NOvA)

- Muon neutrino beam at Fermilab near Chicago
- Longest baseline in operation (810 km), large matter effect, sensitive to mass ordering
- Far/Near detector sited 14 mrad off-axis, narrow-band beam around oscillation maximum

NOvA Event Images

- NOvA detector cells arranged in planes, assembled in alternating X and Y directions
- Produce a pair of pixel maps (Cell Number vs. Plane Number) for the X and Y view of each interaction
- NOvA's 2-view pixel maps are ideal for image processing neural networks to reconstruct neutrino events

EventCVN and ProngCVN

- EventCVN: neutrino event selection CNN trained on cropped XZ and YZ event images (pixel maps). Predicts [ν_{μ} CC, ν_{e} CC, NC, cosmic], used since 2017 [JINST 11, P09001 (2016), Phys.Rev.Lett. 118 (2017)]
- ProngCVN: predicts final state particle type from prong-only images and event images

MobileNet-inspired architecture of 2-view EventCVN.

TransformerCVN for Event and Particle Identification

- Transformer: attention based network, foundation of ChatGPT, ideal for training on variable-length collection of object such as prongs
- Uses both event and prong images as inputs, identifies neutrino flavor and each particle simultaneously.
- Attention mechanisms automatically focus training and evaluation on image regions important to the final decision, significantly reducing the computing burden and enhancing training performance
- Attention mechanisms also provides interpretability, making deep learning more than just a "black box"

Event and Prong ROC Curves

⁽b) ROC Curve for ν_{μ} event reconstruction.

0.75

0.75

1.00

1.00

6

⁽b) ROC Curve for μ prong reconstruction.

Event Confusion Matrices

(a) Efficiency matrix, normalized along truth labels.

	Cosmic		93.13	0.55	0.67	5.65
Efficiency	Truth Label	Ve	0.02	88.48	1.41	10.09
		$ u_{\mu}$	0.16	2.32	90.17	7.35
	Neutra		0.09	6.17	2.65	91.10
			Cosmic	ve	\overline{v}_{μ}	Neutral

Predicted Label

(a) Efficiency matrix, normalized along truth labels.

(b) **Purity** matrix, normalized along predictions.

Event CVN

TransformerCVN

Prong Confusion Matrices

(a) Efficiency matrix, normalized along truth labels.

TransformerCVN

Efficiency	е	77.94	0.29	3.02	4.39	14.35
	μ	0.65	82.36	2.03	12.54	2.42
	uth Labe a	1.87	0.25	64.73	17.72	15.43
	⊢ π [±]	2.13	1.73	12.64	68.22	15.27
	Ŷ	7.35	0.19	6.32	10.68	75.46
e μ p π^{\pm} Predicted Label						

(a) Efficiency matrix, normalized along truth labels.

(b) **Purity** matrix, normalized along predictions.

Interpretability

- Pixel Gradients (Saliency)
 - Saliency: gradient of output classification probability with respect to charge in each hit
 - Attention mechanism enhances the saliency of key regions in the input
 - Study saliency to understand which regions the Transformer focuses on to identify a particle
 - When aggregated, provides a template of a typical pattern for each prong type
- Attention Scores
 - Indicate the importance of different elements to the output
 - Allows us to find out which prongs are most useful to identify different types of events
 - Diagnose neural network and explain decision

Individual Saliency

- Calculate saliency of different hits for each event
- Useful for debugging wrong predictions
- Need to aggregate multiple prongs of the same type to find patterns

Example saliency maps for ve event prediction of v_{e} event (left) and μ prong prediction of v_{μ} CC event (right).

10

Red: more likely to predict the given flavor/particle type with more energy in that location. Green: less likely to predict if there is more activity (anti-correlation).

Saliency Aggregation

- Calculated average saliency values for each type of particle in ~10,000 events
- Rotated and translated each prong image using the vertex and direction information associated with each prong.
 - Every prong forced to have vertex at (40, 0) and facing toward +z.
 - Possibly limit event by track length to compare similar lengths.
- New tool to analyze saliency pattern

Pixel Map Alignment

Saliency Aggregation

- Truth-Only plots contain only prongs whose truth label matches the Positive Class.
- Diagonal displays the gradients for each class.
- Off-Diagonal elements display Positive Class Saliency -Negative Class Saliency

Red: more likely to predict the given flavor/particle type with more energy in that location.

Green: less likely to predict if there is more activity (anticorrelation).

Integrated Saliency Maps

- Comparing 2D maps is challenging, so integrate importance along the width of the detector and plot them all on the same axis w.r.t distance from the vertex
 - Electrons peak early, fall off.
 - Muons have a long, flat profile along track.
 - Photons feature delayed peak.
 - Tail values (>500 cm) tend to go wild due to sparse data in that region

Attention Matrix

Importance of different prong types for classifying the event type

- - e, μ important for corresponding CC events.
- - p and π^0 important for NC.

Summary

- "TransfomerCVN" architecture has been developed for joint event/particle classification
- Performance comparable or better than traditional CNN
- Use Saliency to identify shower/track regions that are important to the final decision
- Use Attention scores to interpret relationships between output event and particle classifications

Thank yo 15