Vertex-finding in a DUNE far-detector using Pandora deep learning

Andy Chappell for the DUNE Collaboration 27/06/2024 NPML 2024

Overview

- Reconstructing neutrino interactions in a liquid-argon imaging detector is a complex task
- A critical component of the pattern recognition procedure is the determination of the initial interaction location
- This talk will present a solution to this vertex finding task that integrates deep learning with an algorithmic pattern recognition chain in the Pandora pattern recognition framework

DUNE physics

- Precision measurements of neutrino mixing parameters and the CP phase
- Measurement of the neutrino mass ordering
- Atmospheric neutrinos
- Exploration of the v_{τ} sector
- Sensitive to low energy neutrinos
 - Supernova and solar neutrinos
- Low background
 - Sensitivity to BSM physics
- Achieving this broad program requires effective exploitation of our imaging detectors...

LArTPC operation

- Fully active interaction medium
- Charged particles ionize argon atoms to produce drift electrons (and scintillation light) along the particle trajectory
- Electrons drift in the electric field
- Three anode wire planes (horizontal drift variant) record the deposited charge using wires of different orientations
- Result is three different 2D projections of the charged particles in the interaction
- Need to correlate those images to extract distinct 3D particle trajectories and the hierarchical flow relating them

4

5

Finding the interaction vertex

- Why is it important?
 - Vertex acts as anchor for clustering decisions
 - Determining particle flow depends on starting in the right place
- Why is it hard?
 - No a priori precision knowledge of the interaction location
 - 3D interaction projected onto 2D outputs produces overlapping particle trajectories
 - Highly variable topologies, not always obvious, even by eye
- Use cases
 - Unless otherwise stated, all plots focus on accelerator neutrinos in the DUNE horizontal drift (HD) far detector, other use cases include:

DUNE vertical drift far detector DUNE Near Detector (under AIDAinnova) DUNE isotropic atmospheric samples MicroBooNE (cosmic background) Low energy supernova neutrinos at DUNE Upcoming test-beam interactions at ProtoDUNE

The concept

In training hits are assigned a class according to distance from true vertex

Network trained to learn those distances from input images

Network infers hit distances and resultant heat map isolates candidate vertex

Network architecture

- U-ResNet structure for image segmentation (arXiv:1505.04597)
- Attempt to classify every pixel in an image

Two pass approach

- DUNE events can span a large physical region (many metres)
- 256x256 pixel pass 1 input to maintain computational tractability (including CPU inference)
- Pixels have low spatial resolution relative to DUNE's ~0.5 cm wire pitch
- Solution: Low resolution first pass, zoom in on Rol for second pass

Gap between anode plane assemblies

- Use hit distribution around pass 1 estimated vertex to frame RoI to include as much context as possible
- 128x128 pixels for pass 2

Pass 1 estimated vertex

\sim

Vertex reconstruction performance

- Network yields performant vertexing
 - Previous vertexing performed by a BDT
 - Notable improvement over previous
 - Remaining efficiency losses outlined in next slide

Vertex reconstruction performance

- Network performs particularly well when there is clear pointing information
- Failures emerge as pointing information becomes ambiguous or hits very sparse

"Model dependence"

- We expect vertex efficiency/resolution to depend on the number of particles that point back to the true interaction vertex
- Different generators and nuclear models produce different particle multiplicities, particularly for the number of protons with momentum below 0.4 GeV
- Model dependence can lead to bias that yield incorrect physics conclusions or significant systematics
- To investigate the effect, we generate events which vary only in their sub 0.4 GeV proton multiplicity

Ор	Standard	$n \rightarrow p$
Generation as standard p < 0.4 GeV removed	1000 ν_{μ} , 1000 ν_{e} Fixed seed for generation Fixed seed for G4 sim	Generation as standard n < 0.4 GeV swapped to p

 Provides closest possible equivalence between events to isolate the effect of proton multiplicity as much as possible

"Model dependence"

"Model dependence"

Performance as a function of inelasticity

- CC interactions relatively insensitive to inelasticity $(1 \frac{E_{lep}}{E_{\nu}})$
 - Slight turnover at highest inelasticity plausible secondary vertices, overlapping trajectories
- NC interactions show strong dependence
 - No leading lepton and lack of hadronic activity yields little pointing information

Future work

- Technical changes
 - Sparse convolutions or graph-based methods might eliminate need for multiple passes
 - Split distance metric into orthogonal directions to simplify heatmap generation/processing
- Secondary vertices
 - Can extend technique to find secondary vertices
 - Guide reconstruction algorithms to "connect the dots"

Conclusions

- Combination of deep learning and algorithmic pattern recognition yields performant vertex identification
 - Indirect approach plays to CNN classification strengths
 - Post-processing algorithm picks out the vertex
- Low particle multiplicity can reduce vertex reconstruction efficiency, but does not systematically bias reconstructed vertex position
- A range of potential enhancements and extensions to explore

NPML 2024

Backup

Classification versus regression

- Why distance classes instead of per-pixel regression?
 - Distance is an inherently continuous variable, but also one that proved challenging to learn
 - Distribution of network estimates with respect to true distance often biased and with broad, asymmetric errors
 - Binning the ranges of distances and treating as classes proved accurate and sufficiently precise
- Plot shows indicative distribution of difference between network inference and truth for a single true distance interval
 - Regression results are mapped onto corresponding classes for comparison

Evaluating training

- Visualize loss landscape as per Li et al (arXiv:1712.09913)
 - Generate random Gaussian direction vectors (N = 2.2M), δ and η
 - Pick α and β on a grid [-1, 1] and step $\alpha\delta$ + $\beta\eta$ away from training minimum and compute mean loss over 1024 validation set events
- Smooth loss landscape yields smooth loss function evolution
- High classification accuracy across classes

20

Vertex reconstruction performance

Large majority of events have accurately reconstructed interaction vertex

DUNE preliminary

#Events:156589

(µ=0.03,σ=0.37)

0.08

fraction of events

0.02

0.00

• Precise and unbiased

21

Performance as a function of multiplicity

- Importance of pointing information evident in performance as a function of particle multiplicity
 - A single additional particle, of any flavour, notably improves performance
 - Ideally you want at least two track-like particles emerging from a common vertex
 - In general, greater multiplicity yields greater performance

NPML 2024

Performance in atmospheric neutrino sample

• DUNE HD FD atmospheric neutrino

