Identifying Neutrino Final States in MicroBooNE with a New Deep-Learning Based LArTPC Reconstruction Framework

Matthew Rosenberg (Tufts University) 6/25/2024 2024 Neutrino Physics and Machine Learning Conference

Overview

- A brief overview of the MicroBooNE detector
- A new deep-learning based reconstruction framework in MicroBooNE
- Demonstration of performance and test of data/MC consistency with inclusive CC ν_e and CC ν_μ selections
- Comparison to highest-efficiency published (previous best) MicroBooNE results
- Much more detail on everything here can be found in our MicroBooNE public note release: MICROBOONE-NOTE-1123-PUB

The MicroBooNE Detector

- A LArTPC located in the Booster Neutrino Beam at Fermilab
 - Designed with a primary aim of studying the MiniBooNE low-energy excess (LEE)

The MicroBooNE Detector

- A LArTPC located in the Booster Neutrino Beam at Fermilab
 - Provides the capability to image neutrino interactions with mm-scale precision
 - This allows for the use of powerful computer vision techniques to reconstruct neutrino interactions

A New CNN-Based Reconstruction Framework

Builds on a previous DLbased framework (designed for the MicroBooNE quasielastic CC v_e LEE search*) to allow for generic neutrino interaction reconstruction

* P. Abratenko et al. (MicroBooNE), Phys. Rev. D **105**, 112003 (2022)

Spacepoint Creation with LArMatch

Fraction of spacepoints vs. distance from the ground truth trajectory of simulated tracks

- LarMatch: a U-NET CNN developed by Taritree Wongjirad
- Finds true 3D energy deposition points and keypoints (neutrino vertices, track start/end points, shower start points, etc.) from wire-plane images

Spacepoint Tagging

- Tag 3D spacepoints as:
 - Cosmic or neutrino, using the charge-light matching algorithms of the MicroBooNE Wire-Cell reconstruction
 - P. Abratenko et al. (MicroBooNE), Phys. Rev. D 105, 112005 (2022)
 - Track or shower, using the labels for constituent pixels from the SSNet CNN (developed for the MicroBooNE quasi-elastic CC ν_e LEE search)
 - P. Abratenko et al. (MicroBooNE), Phys. Rev. D 105, 112003 (2022)

Spacepoint Clustering

- Cluster spacepoints into particle candidates:
 - Partition points using track vs. shower tags and cosmic vs. in-time neutrino tags
 - Within each partition reconstruct clusters using DBScan and other non-ML algorithms for refinement

Particle Identification with LArPID

- LArPID: a particle identification CNN
- Takes cropped 2D images of pixels associated with 3D particle clusters and full event context images as input
- Assigns particle labels, classifies as neutrino-interaction primary vs. secondary particle, and outputs reconstruction quality metrics (purity and completeness)

LArPID Particle Classification Performance

	True e^{\pm}	True γ	True μ^{\pm}	True π^{\pm}	True p
Fraction classified as e^{\pm}	84.5%	5.2%	0.1%	0.5%	0%
Fraction classified as γ	12.7%	94.3%	0.2%	0.2%	0.1%
Fraction classified as μ^{\pm}	0.4%	0.1%	93.9%	11.5%	0.3%
Fraction classified as π^{\pm}	2.3%	0.3%	5.6%	86.5%	1.6%
Fraction classified as p	0.1%	0.1%	0.2%	1.4%	97.9%

Neutrino Candidate Formation

• Attach reconstructed particle clusters to Neutrino vertex keypoints found by LArMatch to form neutrino interaction candidates

30 cm

Inclusive CC Neutrino Selections with DL-Based Reconstruction

- Select CC ν_e and CC ν_μ interactions by cutting on LArPID outputs of clusters attached to neutrino interaction candidates
 - Inclusive CC $\nu_{\rm e}$ selection:
 - No LArPID-classified muon or any tracks with a high muon score
 - · At least one LArPID-classified electron shower
 - Largest LArPID-classified electron shower is also classified as a primary particle and has low photon and pion scores
 - Inclusive CC ν_{μ} selection:
 - At least one LArPID-classified muon track
- Compare to MicroBooNE's highest-efficiency published (previous best) inclusive selection results, which utilize the Wire-Cell reconstruction
 - P. Abratenko et al. (MicroBooNE), Phys. Rev. D 105, 112005 (2022)

Predicted Selection Results

• Inclusive CC selections have high purity and efficiency, compare favorably to MicroBooNE's previous-best results

	DL Reco	Wire Cell
CC ν_e Efficiency	57%	46%
CC ν_e Purity	91%	82%
CC ν_{μ} Efficiency	68%	68%
CC ν_{μ} Purity	96%	92%

Inclusive CC numu Selection MC Predictions

Selection Results with MicroBooNE Open Data

• Good data/MC consistency in high-level kinematic distributions (see backup slides for lepton momentum and cos(θ) distributions)

Inclusive CCnue Selected Events

Inclusive CCnumu Selected Events

	$CC \nu_e$	$CC \nu_e$	$CC \nu_e$	$CC \nu_{\mu}$	$CC \nu_{\mu}$	$CC \nu_{\mu}$
	Selection,	Selection,	Selection,	Selection,	Selection,	Selection,
	E_{ν} Binning	p_{e^-} Binning	$\cos(\theta)$ Binning	E_{ν} Binning	p_{μ} Binning	$\cos(\theta)$ Binning
χ^2 /DOF	3.80/9	3.06/8	5.18/6	25.08/21	11.91/21	9.73/16
p value	0.924	0.931	0.521	0.244	0.942	0.880

Comparison to Wire-Cell: CC v_e Open Data Results

- Comparing selected events in open data, all manually hand scanned
- Number of probable signal events found by DL reco but not Wire Cell: 11
- Number of probable signal events found by Wire-Cell but not DL reco: 6

	DL Reco Data Hand Scan Estimate	DL Reco MC Prediction	Wire-Cell Data Hand Scan Estimate	Wire-Cell MC Prediction
Total Events	44	48.3	40	41.2
Signal Count	42-43	44.0	37-38	33.8
Background Count	1-2	4.3	2-3	7.3
Purity	95% - 98%	91%	93% - 95%	82%

Conclusions

- This work represents the first demonstration of a deep-learning based generic neutrino interaction reconstruction framework on real LArTPC data
- Predicted CC v_e and CC v_{μ} selection results compare favorably to MicroBooNE's previous-best results
 - Reduced backgrounds and predicted 24% increase in number of selected CCnue events
 - Predictions consistent with hand scans of CC $\nu_{\rm e}$ events selected from MicroBooNE open data set
- Predicted distributions of high-level kinematic kinematic variables for selected CC events are consistent with data, and systematic uncertainties are similar to non-DL-based reco frameworks
 - Evidence of the robustness of the framework and a lack of significant data/MC domain shifts introduced by deploying CNNs trained on MC
- Results show potential for DL tools to improve the sensitivity of future analyses in MicroBooNE and other LArTPC experiments
 - Full framework or individual tools (especially LArPID) could be adapted in other reconstruction frameworks or LArTPC experiments

Backup Slides

Additional LArPID Evaluation Metrics

- Particle production process classification accuracy
 - Classes: primary neutrino-final-state particle, secondary with a charged parent, and secondary with a neutral parent

	True primary	True neutral parent	True charged parent
Fraction classified as primary	87.8%	3.4%	6.5%
Fraction classified as neutral parent	2.9%	93.6%	6.9%
Fraction classified as charged parent	9.3%	3.0%	$\mathbf{86.7\%}$

- Reconstruction quality metrics
 - Purity: fraction of the reconstructed cluster that was created by the true (simulated) particle
 - Completeness: fraction of the true (simulated) particle that was reconstructed in the cluster

Reconstruction Performance: Neutrino Vertex Efficiency and Resolution

- Neutrino vertices found through LArMatch keypoint network
- In MC, 68% of neutrino vertices are within 9.2mm (~3 wires) of true interaction position

Vertex Resolution for MC Neutrino Interactions

Reconstruction Performance: Particle Clustering Quality

- · Check purity and completeness of clusters reconstructed from simulated particles in MC neutrino interactions
 - Purity: fraction of the reconstructed cluster that was created by the true (simulated) particle
 - Completeness: fraction of the true (simulated) particle that was reconstructed in the cluster

Additional Primary Lepton Distributions for Inclusive Selections

Inclusive CCnue Selected Events

