Machine Learning Approach to a Pandora-based Oscillation Analysis

Isobel Mawby (they/them) for the DUNE collaboration Neutrino Physics and Machine Learning @ ETH Zurich

1 11-1

The Deep Underground Neutrino Experiment

A next generation long-baseline neutrino experiment

Primary goals:

- **Precisely** measure the neutrino oscillation parameters
- Search for beyond the standard model physics e.g. proton decay, and
- Detect **low energy** neutrinos, such as those from a supernova burst

The DUNE Far Detectors

Four 10kt (FV) detector modules

- At least three will be Liquid-Argon Time-Projection Chambers (LArTPCs):
- Neutrinos enter the detector and interact with argon nuclei
- Outgoing charged particles ionise the liquid argon as they traverse the detector
- An applied electric field drifts the ionisation electrons to a series of readout planes where they are detected

The DUNE Far Detectors

Four 10kt (FV) detector modules (approx. 3 giraffes tall and 2.5 tennis courts long!)

At least three will be Liquid-Argon Time-Projection Chambers (LArTPCs):

- Neutrinos enter the detector and interact with argon nuclei
- Outgoing charged particles ionise the liquid argon as they traverse the detector
- An applied electric field drifts the ionisation electrons to a series of readout planes where they are detected

LArTPC Images

- LArTPC detectors are fully active and fine grain
- The images we obtain demonstrate incredible spatial and calorimetric resolution

6 GeV/c pion candidate

6 GeV/c electron candidate

Lancaster 🍱

University

Pandora – the hope left in the jar

- Pandora is a **pattern recognition software**, used to reconstruct neutrino interactions
- The detail of the fine-grain images we obtain from LArTPCs presents a huge reconstruction challenge
- Pandora overcomes this with a 'multi-algorithm approach', where the reconstruction is split into stages composed of many 'hand engineered' and machine learning-based algorithms

The Reconstruction → Analysis Continuum

 Pandora uses the reconstruction → analysis continuum approach to development:

i.e. what does the reconstruction need to get right, for an analysis to be optimal?

- Efforts are therefore focused on the reconstruction improvements **that are important for physics**
- In this talk I'll focus on a Pandora-based measurement of the CP-violation in neutrino oscillations

ancaster

A Pandora based CP-violation analysis

ALA AAAAAA

A Pandora CP-violation Analysis

The Pandora-based v_e/v_μ Selection

In the Pandora-based analysis, events are selected based on the identity of the leading lepton (if it exists) candidate electron I v_{μ} selection v_e selection most true CC v_e event Is candidate electron electron-like no I electron-like Is candidate muon muon-like PID Is candidate muon not candidate muon most muon-like muon-like yes yes Fill v_{μ} reconstructed Fill v_e reconstructed energy spectrum energy spectrum

The Pandora-based v_e/v_μ Selection

In the Pandora-based analysis, events are selected based on the identity of the leading lepton (if it exists)

Building a Network

- Arguably the most **important choice is the network's input** we need to think about this carefully
- So, what do we (as physicists) look for when trying to perform PID?

- Arguably the most **important choice is the network's input** we need to think about this carefully
- So, what do we (as physicists) look for when trying to perform PID?

University

• 2D networks are the natural choice, so we need our inputs to be 2D grids

⇒we will build a start and end grid for the energy deposits of each U, V and W Pandora view

• The start/end grid triplets will correspond to the same 3D space, allowing the network to infer the *dE/dx*

• By focusing on the start and end points, and only using the hits contained within the particle, we miss out some 'higher-level' physics features that are useful for PID

Lancaster 🍱

University

Network Architecture

Performance: Confusion Matrices

- Training (validation) performed on $\sim 2M$ ($\sim 200,000$) particles, passing reconstruction quality thresholds
- Network trained for 10 epochs, using the **GPUs** of the **Lancaster HEC cluster** ۲

DUNE Preliminary

Lancaster 🍱 University

18 Isobel Mawby Neutrino Physics and Machine Learning, 27th June 2024

Performance: ROC Curves

* For particles passing reconstruction quality thresholds

Performance: Neutrino Selection Metrics

	Selection Efficiency	Selection Purity
v_e Selection	67.7%	72.7%
$ u_{\mu} $ Selection	92.8%	93.2%

- The v_e selection is limited by the reconstruction of electron showers, particularly their contamination and incomplete growth
- The ν_{μ} selection is limited by μ/π confusion

Building the Neutrino Hierarchy

VERY EARLY DAYS WARNING

One of the final algorithms in Pandora constructs the 'neutrino hierarchy'

- Obviously very important in cross-section analyses, but is also a very important stage in our CP-violation analysis:
 - Optimise **efficiency** by tagging leading leptons as children of the neutrino
 - Reduce **backgrounds** by tagging neutrino grandchildren (and higher) $\pi \& \gamma$ as such
 - Achieve a **better energy reconstruction** by correctly identifying the evolution of particles in neutrino interactions

Graph Neural Network (GNN) Approach

- Currently Pandora uses a 'hand engineered' algorithm, which identifies most particles as neutrino children unless absolutely sure otherwise ⇒ needs to be improved!
- Particle hierarchies look like graphs!
 - Nodes represent particles
 - Edges represent parent-child links
- With GNNs, there's often several valid approaches to a given task
- I'm currently considering a **two step link-prediction solution**:

Off to a good start, hopefully exciting work to come!

VFRY FARLY DAYS

WARNING

- Pandora is a **pattern recognition software**, used to reconstruct neutrino interactions
- Our reconstruction performance is best understood in terms of physics analysis, and these results are used to drive developments
- I've introduced DUNE's flagship analysis: the search for CP-violation using the DUNE far detectors
- We have a strong analysis foundation
- Can now turn our attention to reconstruction improvements, e.g.
 - Neutrino hierarchy building via GNNs
 - Shower re-clustering (Maria Brigida's talk)
 - Neutrino vertexing (Andy's talk)

Thank you for listening!

Here be dragons

Pandizzle and Pandrizzle

• Currently, we use BDTs for the PID:

• They're very good, but can improve with more sophisticated machine learning methods?

26 Isobel Mawby | Neutrino Physics and Machine Learning, 27th June 2024

