

FG/Valencia Experimental Group of Astroparticles

An overview of Machine Learning techniques in KM3NeT

Neutrino Physics and Machine Learning ETH Zurich

Jorge Prado González Instituto de Física Corpuscular, Valencia, España. jorge.prado@ific.uv.es 27/06/2024

• KM3NeT/ARCA and KM3NeT/ORCA

• Summary of machine learning projects in KM3NeT

 Results of Machine Learning techniques applied in KM3NeT

KM3NeT

- International collaboration
 - ~250 members
 - 45 partner institutes
 - Over 14 countries.
- Two detectors in different sites: KM3NeT/ORCA and KM3NeT/ARCA:
 - Same technology
 - Same data processing
 - Same software and common dataformats.
 - Different size and granularity.

KM3NeT - ARCA and ORCA

• KM3NeT/ORCA:

- Low energies (~few GeV to hundreds of GeVs)
- > Fundamental neutrino property studies (mainly)
- > Full ORCA: 115 DUs, 18 DOMs per DU
- Current ORCA: 23 DUs deployed

• KM3NeT/ARCA:

- High energies (sub-TeV to few PeV)
- Astrophysical studies (mainly)
- > Full ARCA: 230 DUs, 18 DOMs per DU
- Current ARCA: 28 DUs deployed

DU: Detection Unit. String of 18 DOMs. DOM: Digital Optical Module.

KM3NeT - Detection principle. Event topology

+ VEGA

Valencia Experimental

CNNs:

- Event reconstruction for KM3NeT/ORCA using convolutional neural networks (M. Moser, KM3NeT)
- Event Classification and Energy Reconstruction for ANTARES using Convolutional Neural Networks (N. Geißelbrecht, ANTARES)
- Deep learning reconstruction in ANTARES (J. García-Méndez et al., ANTARES)
- <u>Dark matter search towards the Sun using Machine Learning reconstructions of single-line events in ANTARES</u> (J. García-Méndez et al., ANTARES)

Fully-connected NNs:

• <u>Deep Neural Networks for combined neutrino energy estimate with KM3NeT/ORCA6</u> (S. Peña Martínez, KM3NeT)

Transformers/Foundation models:

- Transformer based classification and reconstruction in KM3NeT/ORCA (I. Mozun, KM3NeT)
- Preliminary studies of foundation models in KM3NeT (M. Eff, KM3NeT)

Deep Learning Projects in KM3NeT

GNNs:

- Development of detector calibration and graph neural network-based selection and reconstruction algorithms for the measurement of oscillation parameters with KM3NeT/ORCA (D. Guderian, KM3NeT)
- Data reconstruction and classification with graph neural networks in KM3NeT/ARCA6-8 (F. Filippini et al., KM3NeT)
- Cosmic ray composition measurement using Graph Neural Networks for KM3NeT/ORCA (S. Reck, KM3NeT)
- Optimisation of energy regression with sample weights for GNNs in KM3NeT/ORCA (B.Setter, KM3NeT)
- <u>Tau neutrino identification with Graph Neural Networks in KM3NeT/ORCA</u> (L. Hennig, KM3NeT)
- Energy reconstruction in ARCA21 using GNNs (E. Tragia, P. Gkotsis, E. Drakopoulou, KM3NeT)
- Particle ID classification, energy, direction and interaction vertex position reconstruction in KM3NeT/ORCA using Dynedge (J. Prado, KM3NeT)
- Neutrino Selection using GNNs for ARCA28 (A. Veutro, KM3NeT)
- Neutrino Direction reconstruction using GNNs for ARCA21 (M.R. Musone, KM3NeT)

And several different ML-based projects being already part of physics analyses (BDTs, RFs...):

- ParamPID: t/s, nu/noise and nu/mu classifier with XGBoost (A. Lazo & L. Maderer, KM3NeT)
- CR composition measurement: Atm. muon bundle reconstruction using RFs (P. Kalaczynski, KM3NeT)
- BoostTauID: identify GeV tau neutrinos in ORCA with XGBoost/ParamPID (N.Geißelbrecht, KM3NeT)

Deep Learning data preprocessing in KM3NeT

Deep Learning for Neutrino Telescopes

- **OrcaSong** is a project for preprocessing raw KM3NeT/ORCA or KM3NeT/ARCA data for the use of neural networks (maintained by Lukas Hennig).
 - Produces list of nodes, each representing info about a hit in the detector for graph networks. \succ
 - Produces n-dimensional images for convolutional networks. \succ
- GraphNeT 2.0 is a common framework for DL projects with a modular pipeline to build your own experiment data converter.

- KM3NeT classes already implemented waiting for review. \succ
 - Very easy to include your model there. Very well documented software [GraphNet] instructions.

icecube	extractor_name option to generic extractor + bug fix
🖿 internal	update data converter
🖿 km3net 🔫	added new event_no implementation, added new MH extracto
🖿 liquido	change order of variables in liquido
prometheus	add prometheus reader

+ V€GΛ

Graph Neural Networks in KM3NeT

Graph Neural Networks in ARCA (ARCA28*)

Neutrino Classification with ORCANeT

- Network trained to distinguish between atmospheric muons and neutrinos (cosmic and atmospheric)
- Efficiency requiring neutrino score >0.99996:
 - Muon contamination below 20%
 - Expected cosmic neutrino rate around 1.8 per month
- Real time performance. Average time to process an event:
 - > 230 ms if running on CPU
 - 140 ms if running on GPU

[Credit A. Veutro]

Graph Neural Networks in ARCA (ARCA21)

Tracks Energy reco with ORCANeT and Dynedge

- **ORCANET** and **Dynedge** trained on the same dataset, using the same loss function, on the reconstruction of the **true energy of the neutrino**.
- Each PMT hit is a node with features: position, PMT-direction, time and Time over Threshold.
- Node connected to k=16 nearest neighbours.
- Cut on the uncertainty provided by the GNN or on the maximum likelihood of the standard reconstruction.
- Similar performance of Dynedge and ORCANeT.

[Credit E. Tragia & P. Gkotsis]

Graph Neural Networks in ARCA (ARCA21)

Direction reconstruction with ORCANeT

- Direction reconstruction for track-like events.
- Each node corresponds to a PMT with features position, direction, and time connected with its k=16 nearest neighbours.
- Quality cut applied to both algorithms so that 42% of the events survive.
- GNN does not improve for the moment the performance of the standard likelihood reconstruction.
- Work in progress flag as the GNN performance can be improved by using larger number of neighbours.

+ VEGA Experimental Group of Astroparticles

Graph Neural Networks in ORCA (ORCA6)

Multiple tasks with ORCANeT

- Work in progress!
- GNN trained for:
 - ➤ Signal/noise classif.
 - \succ Track/shower classif.
 - Energy Regression
 - Direction Regression
 - Inelasticity Regression (Björken-y)
- Very good results found for energy and direction regression. The GNN struggles with classification tasks.
- Studying feasibility of Björken-y reconstruction. Difficult task

[Credit S. Peña Martínez]

Graph Neural Networks in ORCA (ORCA115)

Multiple tasks with GraphNeT-Dynedge

- GNN trained for:
 - Track/Shower Classification.
 - Energy, Direction and Vertex position reconstruction.

• First training using GraphNeT dedicated software.

+ VEG∧

• Preliminary results but very promising in both classification and regression problems.

Transformers in KM3NeT

- Work in progress Very promising results!
- Transformer model inspired in Natural Language Processing tasks arranges light pulses in a sequence and learns relationships among them to then perform different tasks.
- Transformer model trained for:
 - > Neutrino/atmospheric muon classification.
 - Track/shower classification.
 - Energy Regression.
 - Direction Regression.
 - Interaction vertex position regression.

"In the near future, trained models on the full KM3NeT/ORCA telescope can be fine-tuned on smaller detectors, setting the first steps to a foundation model that builds neutrino physics language in KM3NeT."

10¹ The Energy (Gav) 1] KM3NeT Collaboration, Letter of intent for KM3NeT 2.0, J. Phys. G 43 (2016) 08400

[2] A. Vaswani et al. Attention is all you need. NIPS (2017

[Credit I. Mozún]

[NPML contribution 6]

15

+ VEGA Experimental Group of Astroparticles

Transformers in ORCA (ORCA115)

Energy reconstruction with Transformers

 Transformer trained on both track and shower simultaneously for energy, direction and vertex position reconstruction, and evaluated on a sample of 150k tracks and 150k showers.

Track-Shower classification with Transformers

- Good Track/Shower topology separation below 10 GeV (AUROC=0.82).
- Great Track/Shower topology separation between
 10-100 GeV (AUROC = 0.91).

Transformers in ORCA (ORCA115)

Direction reconstruction with Transformers

- Angular resolution better than 10 degrees for neutrino energies over 10 GeV.
- **Demonstrated strong capabilities** in energy, direction and vertex position reconstruction.

Vertex position reconstruction with Transformers

- Better performance on showers than on tracks.
- Considering training on entry point on the detector instead of in interaction vertex position (future).

[Credit I. Mozún]

Transformers in ORCA (ORCA115)

 $V_{CC}^{CC} + \tilde{v}_{CC}^{CC}$ $V_{CC}^{CC} + \tilde{v}_{CC}^{CC}$

Some remarkable results:

KM3NeT/ORCA115 preliminary, simulations

All events Track events

Shower events

 10^{-3}

 10^{-4}

Enough Track/Shower topology separation power below 10 GeV (AUROC=0.82) and excellent \succ separation between 10-100 GeV (AUROC = 0.91).

tate [s

 \succ The **transformer model shows promising results** in classification tasks as well as in energy, direction and vertex position reconstruction.

250

Further benchmarking and comparisons with other models need to be carried out. \succ

 10^{2}

Dynedge - Transformers (ORCA115)

Track-shower classifier with GraphNeT-Dynedge and Transformers

- Transformer and Dynedge models embedded in • GraphNeT-KM3NeT software facilitating model comparison with benchmarked databases.
- Transformer and Dynedge trained on events of each • taken from the same dataset and both are predicting on the exact same events.

	Irans.	Dyn.
Train time per epoch	15mins	30mins
Total number of epochs	30	28
Events used for the training per topology	2.4M	2.2M
Model trainable parameters	1.6M	1.4M
Time for inference	5.8ms	3.1ms

GPUs used: - Tesla V100-SXM2-32GB for Dynedge training and both inference. - 8xA100-SXM4-80GB NVIDIA for Transformer model.

19

- Machine learning is a **very active field in KM3NeT**:
 - Significant efforts have been made to test different deep learning algorithms. Classification and reconstruction tasks performed by GNNs and Transformer-based models have shown promising results in both KM3NeT/ORCA and KM3NeT/ARCA
 - Two different contributions at NPML.
 - > Four KM3NeT members participated in the 4th GraphNeT workshop.
- There is still a long way to go:
 - Common framework for benchmarking and easy reproducibility.
 - ➢ Further comparisons of the performance of different models, as well as with the likelihood based methods.
 - ➤ Tests for robustness.
 - Investigate the impact of systematics.
- We are trying **not to reinvent the wheel**. Use tuned models that have already been proven to work on similar problems.

Thank you!

CSIC

Backup slides

CSIC

Appendix - Standard KM3NeT reconstructions

- The standard reconstruction methods for tracks and showers in KM3neT are called **JGandalf** and **Jshowerfit**, respectively.
- The way the methods reconstructs:
 - In both methods, based on the PMTs hits distribution, a first estimation of the quantity to reconstruct is performed.
 - > Then, following different PDFs a sample of hypothesis is performed.
 - Finally, the likelihood of all the hypothesis is evaluated and the ones with a maximum value of the likelihood are stored as the best reconstruction.

Appendix - Transformer Architecture

+ VEGA