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x ∼ pϕ(x); pϕ(x) ≈ p(x)

x ∼ pϕ(x)

x ∼ pϕ(x); pϕ(x) ≤ p(x)
VAEs, Diffusions 

Flows 

GANs 

Transformers

Generative Models

x ∼ pϕ(x); ∏
i

pϕ(xi |x1, x2, …, xi−1)



Normalising Flows
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for Neutrino Cross Section Measurements



Cross Sections 
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T2K 2002.09323 

https://arxiv.org/abs/2002.09323


Cross Sections 
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T2K 2002.09323 

To quantify uncertainties in a cross-section result alternate 
measurements (toys, universes) are produced by varying 
uncertainty parameters (detector, cross-section). 

This produces variations within bins.

https://arxiv.org/abs/2002.09323
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Typically presented as a set of central value with a 
covariance matrix defining the uncertainties and 
correlations between bins.

T2K 2002.09323 

To quantify uncertainties in a cross-section result alternate 
measurements (toys, universes) are produced by varying 
uncertainty parameters (detector, cross-section). 

This produces variations within bins.

https://arxiv.org/abs/2002.09323
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Typically presented as a set of central value with a 
covariance matrix defining the uncertainties and 
correlations between bins.

assumes a gaussian 

T2K 2002.09323 

To quantify uncertainties in a cross-section result alternate 
measurements (toys, universes) are produced by varying 
uncertainty parameters (detector, cross-section). 

This produces variations within bins.

https://arxiv.org/abs/2002.09323


Cross Sections 
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Typically presented as a set of central value with a 
covariance matrix defining the uncertainties and 
correlations between bins.

assumes a gaussian poor -model predsν
if bad approx

T2K 2002.09323 

To quantify uncertainties in a cross-section result alternate 
measurements (toys, universes) are produced by varying 
uncertainty parameters (detector, cross-section). 

This produces variations within bins.

https://arxiv.org/abs/2002.09323
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Overview
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Overview

3. Make -model predictionsν

log p(x)

Bin 1
Bi

n 
2

…
1.  Multivariate Check for non-Gaussianity

Vary Uncertainties

2. Estimate Density

Standard Method ( )χ 2



Overlap with Classifiers

A well trained classifier will approximate the density 
ratio between two distributions.

Test accuracy can be used to quantify the overlap 
between samples from any 2 distributions. 

A B 

Almost disjoint 
Acc ≈ 1.0
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A well trained classifier will approximate the density 
ratio between two distributions.

Test accuracy can be used to quantify the overlap 
between samples from any 2 distributions. 
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Overlap with Classifiers
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A well trained classifier will approximate the density 
ratio between two distributions.

Test accuracy can be used to quantify the overlap 
between samples from any 2 distributions. 

A B 

Almost disjoint 
Acc ≈ 1.0

A B 

Some overlap
 1.0 > Acc > 0.5

A B 

Almost Complete 
Overlap Acc ≈ 0.5



18Figure form the Understanding Deep Learning book by Simon J.D. Prince. 

px(x; ϕ) = pz( f −1
ϕ (x)) det (

∂f −1
ϕ (x)
∂x )fϕ(z) = x

fϕ = f0 ∘ f1 . . . fN

Density Estimation with Normalising Flows

generate new samples compute the density of a sample

https://udlbook.github.io/udlbook/


Neutrino Model Predictions
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For a Gaussian to compute the p-value:

pval = ∫
∞

ℳ(x)
χ2(t)dt = 1 − CDFχ2(ℳ(x))

Where we have used  to be the distance of the toy  
to the mean and covariance of the distribution.

ℳ x

ℳ(x) = (x − μ)TΣ−1(x − μ)

Because we use the Mahalanobis distance we are 
making another Gaussian assumption!



Neutrino Model Predictions with Flows
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Using the estimates from the flows for each toy, we can 
look at the fractional count of toys with NLL larger than 
the current toy. 

pval ≈
1
N

N

∑
i=1

1(log p(x(i)) ≥ log p(x̂))

To make model comparisons we can use the predicted 

log p(x̂) > log p(x*))



50D Mixture Distribution
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We start with quasi-realistic example of Gaussian Mixture 
distribution in 50D roughly following the covariance 
matrix of a T2K result.

The normalising flow is able to capture the distribution 
well.



50D Mixture Distribution
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We know the true log-probability so we can 
compute p-values exactly. 

We show we can improve the baseline method 
(using the Mahalanobis distance) by computing the 
p-value from the estimated log-probability from a 
Gaussian baseline. 

Finally the normalising flow achieves even better p-
value estimation  



50D Mixture Distribution
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We know the true log-probability so we can compute p-
values exactly. 

We show we can improve the baseline method (using the 
Mahalanobis distance) by computing the p-value from the 
estimated log-probability from a Gaussian baseline. 

Finally the normalizing flow improves the p-value 
estimation even further.

1

TABLE I. 50-dimensional Gaussian mixture task: Two-
sample test score (C2ST), log-likelihood (NLL) on samples.
Pearson r, mean squared error (MSE) and coe�cient of de-
termination R2 on predicted p̂val v true pval.

samples pval

Method C2ST # NLL # r " MSE # R2 "
Baseline 0.99 – 0.70 0.173 -1.07

Improved Baseline 0.99 -90.4 0.78 0.036 0.56
Normalizing Flow 0.55 -133.6 0.99 0.002 0.98

True 0.50 -134.6

# (") - Lower (higher) is better.



Realistic Measurements
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Using toys from a recent result by MicroBooNE 
2301.03706, we see that that systematic uncertainties 
cannot be described fully by a Gaussian.

These plots do not include statistical uncertainties (in 
progress) so in reality the non-Gaussian effect would be 
less prominent. 

1

TABLE I. C2ST and p-values for di↵erent uncertainty types
of the MicroBooNE data assuming infinite statistics.

Type Ntoys C2ST pval
Cross-Section 500 66.3± 4.6 0.01
Re-interaction 1000 92.4± 1.1 0.00

Flux 1000 52.2± 5.0 0.33

https://arxiv.org/abs/2301.03706


Realistic Measurements
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We also use toys from a T2K-like simulation projected to 
5 times current statistics. 

In this case we also find that the Gaussian approximation 
does not hold. 

We further show the normalizing flow can be trained to 
account for non-Gaussian features. 

Results also presented at Neutrino 2024



Future Work
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We have shown normalizing flows can be used to 
estimate the distribution of alternate measurements in 
cross-section measurements 📈

This could be key to allow more accurate neutrino 
interaction model predictions especially in systematics-
limited cross-section results.

Stay tuned for upcoming paper and software package 💻



Transformers
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for Unfolding Tasks



Unfolding 
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Generative models can be used to find 
the true variables given reconstructed 
quantities without weights.

A generative model trained on pairs of 
reco and true data.

Unfolding 6 detector variables simultaneously  [Heutsch et al. 2024]

p(xtrue|xreco)



Unfolding and Resmeraring
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What if instead of 1-way unfolding 
you wanted to find the mapping 
between ND and FD reco directly?

Also possible!

p(xFD|xND)
FDND Truth*

?



Conditional ND -> FD Generation
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p(xFD|xND)

To model this conditional distribution we use an autoregressive transformer architecture.
 

p(xFD |xND) = ∏
i

p(xiFD
|x1FD

, x2FD
, . . . , xi−1FD

, xND)

Scales really well, and allows to impose (physically) motivated conditions on each predicted
far detector variable. 
 



Conditional ND -> FD Generation
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ND

Transformer

FD

Instead of predicting discrete values, for each FD variable 
the transformer predicts the components of a gaussian 
mixture   

Trained by minimizing negative log-likelihood.

Allows us to impose conditions on the predicted variable, 
as long as they have a tractable Jacobian transformation.

N : p, μ, σ

References: 2305.10475, 2312.02116

https://arxiv.org/abs/2305.10475
https://arxiv.org/abs/2312.02116


Toy 4ND -> 4FD Translation
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A toy task showcasing this method:

FDND Truth*

Xtruth ∼ Y
Xnear = Xtruth + εnear

Xfar = Xtruth + εfar



Results on the Toy Task
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Results on the Toy Task
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Results on the Toy Task
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Results on the Toy Task
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Future Work

37

ND

Transformer

FDWe have shown an application of a transformer for 
conditional generation of reconstructed variables. 

The method is scalable and allows to impose physically 
motivated conditions.

We plan to present results on the effectiveness of this 
method when combined with the DUNE-PRISM analysis.



Flow Matching/
Diffusion
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For 3D LArTPC Generation



XCube - High Fidelity 3D Generation
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Recent work by NVIDIA shows generating high-fidelity (1024^3) voxelized data. 

Planning to retrain their model on PILArNet.

Possible applications to infilling dead regions within LArTPC. 

https://research.nvidia.com/labs/toronto-ai/xcube/


Conclusion
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Conclusion & 
Highlights 

41

We have shown potential applications 
of transformers, normalizing flows and 
diffusion within neutrino physics.

The generative modeling field is 
rapidly advancing and would enable 
progress within our field as well.

Many more works exist that show 
exciting applications of these methods 
making analysis techniques less 
interaction model dependent and 
allowing to tune simulation better to 
data.

Alonso-Monsalve S et al. 2023Gasiorowski S et al. 2023

Barham Alzás P. 2024 Imani Z. 2023

https://arxiv.org/abs/2310.19695
https://arxiv.org/abs/2309.04639
https://arxiv.org/abs/2309.04639
https://arxiv.org/pdf/2404.00180
https://arxiv.org/pdf/2404.00180
https://arxiv.org/abs/2307.13687
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Thank you

Get in touch!
radi.radev@cern.ch

mailto:radi.radev@cern.ch
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https://udlbook.github.io/udlbook/
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Continuous Normalising Flows
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Instead of training a set of discrete flows we can 
model the transformation as an ODE.

d
dt

ft(x) = vt( ft(x))

Given a suitable choice for a target velocity field we 
can parametrise the velocity field by a NN 

Then to sample we simply integrate the velocity 
starting from 

Only one NN and no invertibility constraints! 

vϕ(x, t)

t0 f0 = z

f1 = x



Studies with known 
PDF 
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Data for studies with known PDF 
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We also explored scenarios where we know the PDF and we are not 
limited by data.

Two studies in this case:

We use the T2K data release from 2002.09323 to generate toys-like 
data with 50 bins:

- Extreme case: skewed lognormal toys: exp(toy)
- Moderate case: less-skewed lognormal toys: lognormal 

distribution in the original space

https://arxiv.org/abs/2002.09323


Extreme case 
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Marginal Plots
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Two example bins of the 49-dimensional distribution.



Evaluation
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Since we constructed the distribution from 
which the toys are drawn we can evaluate 
the true probability for each toy.

Compare it to the estimation of the flow 
model, and with the gaussian baseline.



Evaluation
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Since we constructed the distribution from 
which the toys are drawn we can evaluate 
the true probability for each toy.

Compare it to the estimation of the flow 
model, and with the gaussian baseline.

With real data we can’t do this - if we knew 
the true pdf we would not have to do this at 
all. 



Moderate case
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Marginal Plots
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Two example bins of the 49-dimensional distribution.



Log Probability 
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Since we constructed the distribution from which 
the toys are drawn we can evaluate the true 
probability for each toy.

Compare it to the estimation of the flow model, and 
with the gaussian baseline.
 



Log Probability 
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Since we constructed the distribution from which 
the toys are drawn we can evaluate the true 
probability for each toy.

Compare it to the estimation of the flow model, and 
with the gaussian baseline.
 



Change of variables formula 
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Tracks how the probability volume 
changes as we apply a transformation 
and ensures it stays normalised 

p(y) = p(x) det
∂f(x)

∂x

−1

f(x) = y



Posterior Estimation 
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Normalizing flows can be used to infer the posterior 
distribution over model parameters given observed 
data.

Use a conditional normalising flow trained on pairs of 
observations and model parameters.

Gravitational Wave Inference [Dax et al. 2024]

p(Θ|x)


