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Liquid Argon Time Projection Chambers (LArTPCs)

Signal production stepsSignal production stepsSignal production stepsSignal production stepsSignal production stepsSignal production stepsSignal production stepsSignal production stepsSignal production stepsSignal production stepsSignal production stepsSignal production stepsSignal production stepsSignal production stepsSignal production stepsSignal production stepsSignal production steps:
• Argon ionisation
• Ionisation electrons drifted by E field
• Electrons readout on anode plane

• Allows to get precise 3D picture of the
interaction

• Relies on multiple physical processes
→ importance of calibration
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DUNE for precision measurements

Systematics of detector
modeling

Well-understood
detector modeling and
calibration are vital
Eur.Phys.J.C 80 (2020) 10, 978
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Typical LArTPC calibration

e− lifetime calibration

Energy conversion calibration.

Calibration of the different physical parameters are typically done in different studies.
→ can be simplified with a differentiable simulator
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Using gradient-based optimization

Forward
Model

Parameters

Differentiable
Foward Model

Loss

Requires forward
model to be
differentiable:

Gradient Descent
on 

Synthetic Data

Real Data, X

-
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Starting from a non-differentiable LArTPC simulator

Our work: take existing DUNE near-detector
simulation (JINST 18 P04034) and make it
differentiable.
• Retain physics quality of a tool used
collaboration-wide while adding ability to
calculate gradient

• Demonstrate the use of this differentiable
simulation for gradient-based calibration

→ How to do it practice?
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Differentiable relaxations

The base simulation contains discrete operations→ non-differentiable.
Requires differentiable relaxations to be able to get usable gradients.
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• Cuts (e.g. x > 0)→ smooth sigmoid threshold
• Integer operations (e.g. floor division)→ floating point (e.g. regular division)
• Discrete sampling→ interpolation
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Rewriting the simulator

Numba code using CUDA JIT compiled kernels→ Framework change for diff version:
• Differentiable version rewritten using EagerPy(backend agnostic)/PyTorch, which is based
around tensor operations→ use of autograd for automatic gradient calculations

• New version rewritten in a vectorized way to fit within these frameworks

Performance drawbacks:
• Use of dense tensors to represent a sparse
problem

• Moving from CUDA JIT compiled dedicated
kernel to a long chain of generic kernels
(vectorized operations).

→ also impacting memory usage

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Non-diff time [s]

0

10

20

30

40

50

60

Di
ff 

tim
e 

[s
]

Pierre Granger A differentiable simulator for LArTPCs · Recap of previous work ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ Page 9 / 29

https://eagerpy.jonasrauber.de/


The simulator in more details
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Memory challenge

M =

chunk︷ ︸︸ ︷
Nsegments × Npixels×Nt0 × Ntf × Nx × Ny

Because of the use of dense tensors, memory∝ ∆z ×
√

1 + cot2 θ. (length in drift direction and
angle)→ introduced automatic memory estimation for each batch to estimate best pixel chunk size.
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Trade-off between memory and computation time→ use of gradient checkpointing
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Checking the result

Checking that the relaxations
don’t modify the simulator
output.

Average deviation of 0.04
ADC/pixel→ well below the
typical noise level of few
ADCs.
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Optimization of the Model Parameters

• Input particle segments (position and energy deposition): χ
• Model parameters: θ
• Differentiable simulation: f (χ, θ)
• Target data: Ftarget

1. Choose the initial parameter values θ0
2. Run the forward simulation f (χ, θ0)
3. Compare the simulation output and the target data
with a loss function L(f (χ, θ0), Ftarget)

4. Calculate gradients for the parameters
∇θL(f (χ, θ0), Ftarget)

5. Update parameter values θ0 → θi to minimize the
loss
Iterate step 2. to 5.
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Optimization choices: Loss function

Loss function choice is crucial
for minimization quality

https://rtavenar.github.io/blog/dtw.html
Two main ways of computing the loss:
• Comparison of 3D voxel grids of charges (x, y, t→ z, q).

• Difficulty of taking gradients through discrete pixelization.
• Risk of flat loss if not enough overlap in distributions.

• Considering the waveforms for each pixel (time sequence) and using Dynamic Time Warping
• Using a relaxed SoftDTW version that is differentiable.
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Results
Mach.Learn.Sci.Tech. 5 (2024) 2, 025012

• Input sample consisting of 1 GeV simulated
muon tracks

• Second sample of muons, pions and protons
(1 GeV to 3GeV)

• Geometry of a DUNE ND-LAr-prototype
module: 60 cm× 60 cm× 120 cm

• Noise model available in simulator but not
used. 0 1000 2000 3000 4000 5000
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6D simulteanous fit converging under L∞
Doing a ”closure test” based on simulated data, Ftarget = f (χ, θtarget):
→ Fit of 6 physical parameters simulteanously on simulated data for multiple targets.
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Improving the performance: why?

Current simulator performance are limiting for future applications:

• Application to real data (Yifan pres.) → large
batches and quantity of data required to
mitigate the effects of electronics noise

• Being able to have more complicated
physical models: inhomogeneous drift fields,
space charge effect, …

• Running the code on less demanding
hardware (major limitation on memory)

• Allowing to ease uncertainty quantification:
running multiple fits with different seeds,
computing result on whole distributions, …
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∼ 25 s to process a 100 cm batch→ ∼ 30 h for a
full fit (5000 iterations)
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Bottleneck of the initial code
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Redisigning the simulation code
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Change of framework

Benefit of the code redesign to rewrite with a new framework: JAX

Why JAX:
• Allows for ”easy” Just In Time kernel
compilation

• Efficient calculation of the gradient
calculation graph (XLA)

• Runs indifferently on CPU/GPU

Requirements for ”easy” JIT

• No use of basic control-flow
• Loops must have a defined number of
iterations

• No dynamic-shapes: the shape of all the
tensors must be known at compile time =⇒
recompilation of kernels on each shape
change

→ implemented a ”shape memory” to pad inputs
to nearby shapes if already compiled kernels
exist to limit the number of kernel recompilations
(computationally expensive)
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New performance
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• After some iterations, kernels are already compiled for a wide range of shapes→ no more
overhead

• With the rework, the computation time is very strongly driven by the batch size only→ almost
constant computation time

• Speedup of ∼ ×35 → allows for a full fit in ∼ 1 h

• On CPU only…
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Current simulation
• Running the reworked code on GPU is ∼ 5× slower than on CPU… To be investigated.

→ possibly leaves open greater computation time improvements if understood/solved
• Final checks on the correctness wrt previous simulation

Complex comparison: fixes applied wrt ”Reference”, 6= signal simulation wrt newest larnd-sim
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Current simulation

Old larndsim New larndsim

I(x, y, t, t0) =
P(x, y)
R(x, y)e

t0+Q(x,y)−t
R(x,y)

+
1− P(x, y)
S(x, y) e

t0+Q(x,y)−t
S(x,y)

Analytical approximation of the induced current Pre-computed signals as lookup table
(more accurate)

Lookup table is not differentiable, need to find another implementation
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Outlooks
Ongoing work from Dan Douglas to develop a surrogate to replace the lookup table using SIREN

Waveforms: LUT (plain) and SIREN (dashed) Residuals

Surrogate not ideal yet→ probably due to the too coarse sampling of LUT

Re-running the field simulation to have a smoother input to train SIREN on
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Uncertainty quantification: why?

We can make successfully make a calibration fit on simulation. How to quote an uncertainty on the
obtained value?

Several uncertainties we might want to take into
account:
• Uncertainty on the physical parameters /
physical processes

• Uncertainty on the true energy deposits
(inaccessible in data)

• Stochasticity due to noise
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UQ: Uncertainty on the calibrated parameters
Estimating the uncertainty on the calibrated parameters:

• Computing the Hessian matrix to estimate
the parameters error (easily accessible in a
differentiable simulator)

• Profiling the fitted value after convergence
• Running multiple fits in parallel and compare
the convergences (ensembling)
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UQ: Linear error propagation

q(xi) =⇒ σ
2
q =

∑
i

(
∂q
∂xi

σxi

)2

Linear error propagation allows for an estimation of the output uncertainty based on the input
parameters uncertainties→ Only requires the already available derivatives
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UQ: Linear error propagation
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tion of the propagated uncer-
tainty.
Shown: ADC change for a
10% of physical parameter
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Going further
Combining our differentiable simulator with an inverse mapping would allow for direct model
constraining, fully data driven: LCC = (F(NN(ydata))− ydata)

2
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Detector readout

Might allow to improve the calibration by reconstructing the true energy deposits→ important role
of uncertainties (see Dan’s talk today)
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Conclusions

Shown here:
• Proof of concept for the calibration of a LArTPC using a differentiable simulator.
• Multidimensional fit converging correctly on simulated data with the differentiable simulator.
• Simulator rewriting allows to reach way better performance→ will be important for application
to real data

Upcoming challenges:
• Applying this framework to real data (DUNE 2x2 ND data)→ see Yifan’s talk
• Fitting more physical parameters (such as Efield map)
• Uncertainty quantification and propagation
• Inverse problem solving in the future
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