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Overview

• LArTPC sensitivity to 136𝑋𝑒 0𝜈𝛽𝛽.
• Background mitigation with Convolutional and Transformer Neural Networks.
• Quantum Support Vector Machines.
• Performance analysis.
• Automatic optimization of Quantum Feature Maps.
• Towards commercial Quantum Computers usage.
• Conclusions.
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DUNE potential at few-MeV

The Neutrinoless double beta decay (𝟎𝝂𝜷𝜷)
• Hypothetical BSM process
• Consequences:

• Neutrinos are Majorana particles.
• Lepton number is not conserved.

Candidate:

phase space nuclear matrix element

Majorana mass

DUNE: Deep Underground Neutrino Experiment 
Several physics goals:

Low-Energy sector
• Supernova neutrinos
• Solar neutrinos

• WIMPs
• 𝟎𝝂𝜷𝜷

High-Energy sector
• Mass hierarchy
• CP violation
• Proton decay

136Xe54 →  136Ba56 + 2𝑒− + 2 ҧ𝜈𝑒

proposals
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DUNE LArTPC and track reconstruction

DUNE is composed of a Near Detector (ND) and Far 
Detector (FD) facilities.

• FD: four modules of 17kton Liquid Argon Time 
Projection Chambers (LArTPCs).

• Proposal: an «opportunity» module with argon 
doped with xenon at 2% concentration for the 
search of the 136Xe 0𝜈𝛽𝛽 decay.

• Careful background studies (𝛽, n, solar 𝜈, etc …) 
 𝛽 from 42Ar dominates.

Opportunity to explore Quantum Machine Learning models (QML).

Goal: leverage TPC tracking for background mitigation.
Challenging tasks at the MeV-scale in FD LArTPCs:
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Topology-based classification

𝜷𝜷 topologies (signal): two electrons originating 
from the same position in space.

𝜷 topology (background): one electron with an 
energy close to 𝑄𝛽𝛽

 136𝑋𝑒 = 2.458 MeV

βββ

Energy-angle distribution for 𝛽𝛽: 
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“Toy” dataset

(XY) view (5 x 5) mm2

“hit”

5 mm

Dataset:

• Geant4 propagated high-resolution β and ββ tracks in LAr at 
𝐸 = 𝑄𝛽𝛽

136𝑋𝑒 = 2.458 MeV.

• Tracks have been downsampled to 3D voxelized data with 
variable detector granularity (bin-widths) of [𝒘 × 𝒘 × 𝟏] mm3

to simulate a DUNE-like granularity (or better).
• Variable Energy threshold from 10 keV to 200 keV.
• Diffusion and recombination of ions and electrons are taken 

into account.

• Other detector effects were not considered.
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Classical approach: Blob

• Graph representation
• Every hit is a node.
• Nodes are connected if corresponding hits are neighbours.

• Breadth-first search (BFS) algorithm
• Finds the «farthest» node pair
• We expect to have a blob centroid there

• Compute the blob energies by integrating within a radius

R. Moretti et al. (2024)
EPJP 10.1140/epjp/s13360-024-05287-9 
E-print: arXiv:2305.09744v2

Pros: 
• physics-informed
• easy implementation
• deterministic

Cons: 
• does not use all track infomation, 
• can’t handle track discontinuities
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DL approach: CNN

• Feed parallel convolutional branches 
with three planar track projections.

Pros:
•  captures complicated track features.

Cons: 
• can become memory-inefficient, 

especially at high resolution. 
• By projecting in 2D, some information 

is lost.
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DL approach: Transformer

• Feed tracks as lists of hit energies and 
spatial coordinates.

• Only the «Encoder» part of a typical 
Transformer is used.

Pros: 
• memory-efficient, uses the full track 

information. 
Cons: 
• harder to interpret, more complex 

structure.
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Classification comparison

• We trained each model for several pixel 
size (detector granularity) and hit-energy 
threshold.

• Neural Networks outperforms Blob in 
almost any configuration.

• No decisive «winner» between CNN and 
Transformer.

Training size: 140 × 103

Validation size: 30 × 103

Test set size: 30 × 103
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Quantum Computing – in theory
A qubit is a 2-level quantum system described by the 
wavefunction:

𝜓 = 𝛼 0 + 𝛽|1⟩

• Fundamental unit of quantum computation.
• |0〉and |1〉are the two computational basis, in analogy with 

0 and 1 of classical computing.

Qubit states can be visualized as 
points on a sphere’s surface.

Bloch Sphere representation

Hadamard

CNOT

Pauli rotations

…

Entanglement

Qubits are controlled by unitary operators called quantum 
gates, organized in quantum circuits.
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• Well-known Machine Learning model suited for binary and 
multilabel classification.

• Useful for signal/background discrimination.

Task: binary classifications of feature vectors 𝒙 ∈ ℝ𝒏

i.e. predicting the class outcome 𝑦 ∈ {−1; +1}.

Idea: given a feature map 𝜙 Ԧ𝑥 , 𝜙 Ԧ𝑥𝑖 ∈ 𝑀: dim 𝑀 = 𝑚 > 𝑛 ,

finding the best linear decision boundary 𝑤𝑻𝝓 𝒙 − 𝒃 = 𝟎
by maximizing:  

𝑓 𝑐1, 𝑐2, … , 𝑐𝑛 = 

𝑖

𝑐𝑖 −
1

2


𝑖𝑗

𝑦𝑖𝑐𝑖𝑦𝑗𝑐𝑗〈𝜙 Ԧ𝑥𝑖 , 𝜙 Ԧ𝑥𝑗 〉

with 𝑤 = σ𝒊 𝒄𝒊𝒚𝒊𝝓(𝒙𝒊).

When projecting on the original feature space, the 
decision boundary will be generally nonlinear.

Support Vector Machine

Linear

Polynomial

RBF

Common kernel choices:

Kernel function

Feature embedding
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Quantum Support Vector Machine

Promoting the classical feature mapping to a quantum state:

Quantum circuits of with this structure are suitable kernels.

● Feature maps are still implicitly defined.
● Kernel function is still a measure of similarity between 

different samples.

Pros:
● Hilbert space grows rapidly with qubit’s number

○ Expressive classifiers.
● Quantum kernels are generally hard to compute classically

○ No classical counterpart.
● Good results even with small sized circuits

○ Is a NISQ-era algorithm.

Room for quantum advantage.

Cons:
● Lack of featuremap explainability

○ Unintuitive relation between circuit and outcome.
● Usually set arbitrarily

○ Problem of chosing a good Quantum Kernel.
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Hybrid model – 2 qubits

For implementing the NISQ Quantum Support Vector 
Machine (QSVM) with LArTPC measurements, the input 
features must be reduced, while maintaining useful 
informative content. 

Proposed approach: training Neural Networks as 
standalone classifiers, while defining specific feature 
extraction layers for the QSVM input.

SVMs

QSVMs

SVMs

QSVMs

Simulating a QSVM is 
computationally expensive, and 
complexity still scales as 𝑂(𝑛2)
• Limited training set size.
• Still good results, comparable 

with SVM using Rbf.
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Hybrid model – more qubits

• Increasing the qubit number up to 10 leads to overfitting with 
quantum kernels that use entangling gates.

• Strong correlation between amount of overfitting and kernel density.

                                                    

Low kernel density also implies that 
noise will affect more the QSVM 
outcome:
→ hard to run on NISQ hardware.
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Autoencoder as feature extractor

We used a feature reduction algorithm that is 
completely agnostic to the classification task (labels), 
i.e. an autoencoder:

• Stack of feed-forward layers divided into an 
Encoding and a Decoding part.

• Input and output should match as closely as 
possible.

• The hidden layer that produces the reduced feature 
distribution is called «Bottleneck».

• Training cost function minimizes the information 
loss (Mean/Absolute Square Error).

Reduced features
76 -> 18

16



Feature distributions

Features are not well-separated for 𝛽/𝛽𝛽 
classes and not all of them have «gaussian-like» 
distributions.

We expect low accuracy overall, but it is a viable 
testbed for the genetic optimization.
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• Some features are multi-
modal.

• Big overlap between 
distributions.
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Featuremap automatization

Meta-heuristic approach – Genetic algorithm

● Fitness function – quantifies the goodness of a 
kernel.

● Mutation and Crossover operators – introduce 
variability through generations.

● A parent/offspring selection criteria.
● Initial population – Generation zero.

Goal: specialize the kernel population for the given 
classification task.

Min Max Examples

Gate-type 0 custom I, H, X, RX, RY, RZ, CX, S, CRX, …

Feature index 0 custom Feature to use as a primary gate argument

Second feature index 0 custom Feature to use as a secondary argument

Featuremap type 0 2 Linear, quadratic, trigonometric, …

Multi-feature per 
gate

0 1 Use one or two features in a gate rotation 
angle

Target qubit index 0 custom Target qubit index

       

          

                  

         

                      

   

          

         

6 integers per 
quantum gate

Fitness function = 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 + 𝜂 × 𝜎
• 𝜂: experimentally-tuned value set to 0.025
• 𝜎: std of the kernel matrix
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Featuremap automatization

Best classical SVM achieved
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Featuremap automatization
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Speedup through backend parallelization

We can retrieve the kernel entries for each site 
and estimate the output spread due to the QPU 
noise.

It turns out that some sites are less performant 
than other. We can discard them based on how 
much they differ from the avgerage matrix.

By discarding only 4 sites out of 21, the 
spread halves.

• On average the good sites std is 0.044.
• The kernel matrix std between all 

sample entries is 0.241.
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Backend: IBMQ Nazca (127)
Parallel training of 21 4-qubits QSVM 



Data-driven spread effect on genetic runs

𝜎 = 0

𝜎 = 0.02 𝜎 = 0.03 𝜎 = 0.044

We simulated a gaussian noise on the kernel matrix entries up to 
the dispersion estimated from experimental data (𝜎 = 0.044).
Up to 𝜎 = 0.03, the genetic optimization succeeds exhibiting a 
positive trend throughout generations.
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Conclusions

Quantum classifier – QSVM
● The use of QSVMs have been demonstrated for this dataset. 
● Although Quantum Advantage can’t be claimed, simulated, genetic-optimized 

QSVMs exhibit promising performances thanks to genetic optimization.
● Commercially available NISQ hardware is likely to be exploitable for running the 

QSVMs we developed.

Deep Learning
● CNN and Transformer performances are equally good for most granularity/threshold 

conditions, despite the different data-handling.

Physics
● Modest 𝜷𝜷 vs 𝜷 classification accuracy overall (∼ 65%) for an ideal 5 × 5mm2 

pixel-size LArTPC.
● → Depleted argon and better spatial resolution are mandatory.
● Energy threshold heavily affects performances.
● Interesting technique for other low energy physics channels in DUNE.
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