Enhancing Liquid Argon TPCs Performance in Low-Energy Physics Classification Problems with Quantum Machine Learning

Roberto Moretti

roberto.moretti@mib.infn.it

Milano Bicocca University INFN – Milano Bicocca

A. Giachero – UniMiB, INFN F. Terranova – UniMiB, INFN D. Guffanti – UniMiB, INFN M. Grossi – CERN QTI

Neutrino Physics and Machine Learning 2024

NPML24

Overview

- LArTPC sensitivity to ^{136}Xe $0\nu\beta\beta$.
- Background mitigation with **Convolutional** and **Transformer** Neural Networks.
- **Quantum Support Vector Machines**.
- Performance analysis.
- **Automatic optimization of Quantum Feature Maps.**
- Towards commercial Quantum Computers usage.
- Conclusions.

DUNE potential at few-MeV

DUNE: Deep Underground Neutrino Experiment **Several physics goals:**

High-Energy sector

- **Mass hierarchy**
- CP violation
- Proton decay

- Supernova neutrinos
- Solar neutrinos
- WIMPs • $0\nu\beta\beta$ *proposals*

The Neutrinoless double beta decay $(0\nu \beta \beta)$

- Hypothetical BSM process
- Consequences:
	- Neutrinos are Majorana particles.
	- Lepton number is not conserved.

Candidate:

$$
^{136}\text{Xe}_{54} \rightarrow ^{136}\text{Ba}_{56} + 2e^- + 2\bar{\nu}_e
$$

$$
Q_{\beta\beta}^{136Xe} = 2.458 \text{ MeV}
$$

 $T_{\beta\beta}^{0\nu} > 1.07\, \cdot 10^{26}$ y at 90% C.L.

3

DUNE LArTPC and track reconstruction

DUNE is composed of a Near Detector (ND) and Far Detector (FD) facilities.

- FD: four modules of 17kton **Liquid Argon Time Projection Chambers (LArTPCs)**.
- **Proposal:** an «*opportunity*» module with argon doped with xenon at 2% concentration for the search of the 136 Xe $0\nu\beta\beta$ decay.
- Careful background studies (β , n, solar ν , etc ...) β from ⁴²Ar dominates.

Goal: leverage TPC tracking for background mitigation. Challenging tasks at the MeV-scale in FD LArTPCs:

Opportunity to explore **Quantum Machine Learning** models (QML).

Topology-based classification

 $\beta\beta$ topologies (signal): two electrons originating from the same position in space.

 topology (background): one electron with an energy close to $Q_{\beta\beta}^{~136}{}_{X}e = 2.458$ MeV

Energy-angle distribution for $\beta\beta$:

 $d\Gamma_{\beta\beta}^{0\nu}$ $\frac{\vec{p}_1 \cdot \vec{p}_2}{E_1 E_2}$ $\frac{1}{16\pi^5}F(E_1,Z)F(E_2,Z)dE_1d\cos\theta E_1E_2p_1p_2$ $dE_1d\cos\theta$

"Toy" dataset

Dataset:

- Geant4 propagated high-resolution **β** and **ββ** tracks in LAr at $E = Q_{\beta\beta}^{136Xe} = 2.458$ MeV.
- Tracks have been downsampled to **3D voxelized data** with variable detector granularity (bin-widths) of $[w \times w \times 1]$ mm³ to simulate a DUNE-like granularity (or better).
- **Variable Energy threshold** from 10 keV to 200 keV.
- Diffusion and recombination of ions and electrons are taken into account.
- Other detector effects were not considered.

(XY) view (5 x 5) mm²

Classical approach: Blob

• **Graph representation**

- Every hit is a node.
- Nodes are connected if corresponding hits are neighbours.
- **Breadth-first search (BFS) algorithm**
	- Finds the «farthest» node pair
	- We expect to have a blob centroid there
- Compute the blob energies by **integrating within a radius**

Pros:

Cons:

- physics-informed
- easy implementation
- deterministic

• does not use all track infomation, • can't handle track discontinuities

R. Moretti et al. (2024) EPJP *10.1140/epjp/s13360-024-05287-9 E-print: [arXiv:2305.09744v2](https://arxiv.org/abs/2305.09744v2)*

DL approach: CNN

• Feed parallel convolutional branches with three planar track projections.

Pros:

• captures complicated track features.

Cons:

- can become memory-inefficient, especially at high resolution.
- By projecting in 2D, some information is lost.

DL approach: Transformer

- Feed tracks as lists of hit energies and spatial coordinates.
- Only the «Encoder» part of a typical Transformer is used.

Pros:

• memory-efficient, uses the full track information.

Cons:

harder to interpret, more complex structure.

Classification comparison

- We trained each model for several pixel size (detector granularity) and hit-energy threshold.
- **Neural Networks outperforms Blob** in almost any configuration.
- No decisive «winner» between CNN and Transformer.

Training size: 140×10^3 Validation size: 30×10^3 Test set size: 30×10^3

Quantum Computing – in theory

A qubit is a **2-level quantum system** described by the wavefunction:

> $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ $|\alpha|^2 + |\beta|^2 = 1$ $\alpha; \beta \in \mathbb{C}$

- Fundamental unit of quantum computation.
- $|0\rangle$ and $|1\rangle$ are the two computational basis, in analogy with 0 and 1 of classical computing.

Qubit states can be visualized as points on a sphere's surface.

Bloch Sphere representation

Qubits are controlled by unitary operators called **quantum gates**, organized in **quantum circuits**.

Support Vector Machine

- Well-known Machine Learning model suited for binary and multilabel classification.
- Useful for signal/background discrimination.

Task: binary classifications of feature vectors $\vec{x} \in \mathbb{R}^n$ *i.e.* predicting the class outcome $y \in \{-1, +1\}$.

Idea: given a **feature map** $\phi(\vec{x})$, $\phi(\vec{x}_i) \in M$: dim $(M) = m > n$, finding the best linear decision boundary $\vec{w}^T \phi(\vec{x}) - \bm{b} = \bm{0}$ by maximizing:

$$
f(c_1, c_2, ..., c_n) = \sum_i c_i - \frac{1}{2} \sum_{ij} y_i c_i y_j c_j \langle \phi(\vec{x}_i), \phi(\vec{x}_j) \rangle
$$

with $\vec{w} = \sum_i c_i y_i \phi(\vec{x}_i)$.

$$
k(\vec{x}_i, \vec{x}_j)
$$

When projecting on the original feature space, the decision boundary will be generally nonlinear.

Quantum Support Vector Machine

Promoting the classical feature mapping to a quantum state:

 $\phi(\vec{x}) \rightarrow |\phi(\vec{x})\rangle \langle \phi(\vec{x})|$ = $= U(\vec{x})|0\rangle\langle0|U(\vec{x})^{\dagger}$

 $K(\vec{x}_i, \vec{x}_i) = |\langle 0| U(\vec{x}_i)^{\dagger} U(\vec{x}_i) | 0 \rangle|^2$

- Feature maps are still implicitly defined.
- Kernel function is still a measure of similarity between different samples.

Pros:

- Hilbert space grows rapidly with qubit's number
	- **Expressive classifiers.**
- Quantum kernels are generally hard to compute classically
	- **No classical counterpart.**
- Good results even with small sized circuits
	- **Is a NISQ-era algorithm.**

Quantum circuits of with this structure are suitable kernels.

Cons:

- Lack of featuremap explainability
	- Unintuitive relation between circuit and outcome.
- Usually set arbitrarily
	- Problem of chosing a good Quantum Kernel.

Hybrid model – 2 qubits

For implementing the NISQ Quantum Support Vector Machine (QSVM) with LArTPC measurements, the input features must be reduced, while maintaining useful informative content.

Proposed approach: training Neural Networks as *standalone* classifiers, while defining specific *feature extraction layers* for the QSVM input.

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

Simulating a QSVM is computationally expensive, and complexity still scales as $\mathit{O}(n^2)$

- Limited training set size.
- Still good results, comparable with SVM using Rbf.

Hybrid model – more qubits

- Increasing the qubit number up to 10 leads to **overfitting** with quantum kernels that use entangling gates.
- Strong correlation between amount of overfitting and kernel density.

 \rightarrow hard to run on NISQ hardware.

0.700

0.675

0.650

0.625

0.600

 0.575

 $0.550 \cdot$

0.525

 $+$ Linear

z $-zz$

 $- c1$ $+$ c2

Polynomial Rbf

Accuracy on validation set

Autoencoder as feature extractor

We used a feature reduction algorithm that is completely agnostic to the classification task (labels), i.e. an **autoencoder:**

- Stack of **feed-forward layers** divided into an Encoding and a Decoding part.
- Input and output should match as closely as possible.
- The hidden layer that produces the reduced feature distribution is called «Bottleneck».
- Training cost function minimizes the information loss (Mean/Absolute Square Error).

Feature distributions

Features are not well-separated for $\beta/\beta\beta$ classes and not all of them have «gaussian-like» distributions.

We expect low accuracy overall, but it is a viable testbed for the genetic optimization.

20

 $30²$

40

Output (normalized)

Output (normalized)

 1.5

 $1.0\,$

 0.5

 0.0

 -0.5

 -1.0

 -1.5

 -2.0

0

10

Featuremap automatization

Meta-heuristic approach – Genetic algorithm

- *Fitness function* quantifies the goodness of a kernel.
- *Mutation* and *Crossover* operators introduce variability through generations.
- A *parent/offspring* selection criteria.
- Initial population Generation zero.

Goal: specialize the kernel population for the given classification task.

Mutation

Fitness function = $accuracy + \eta \times \sigma$

- η : experimentally-tuned value set to 0.025
- \cdot σ : std of the kernel matrix

6 integers per quantum gate

Featuremap automatization

Best classical SVM achieved

Featuremap automatization

Speedup through backend parallelization

Backend: IBMQ Nazca (127) Parallel training of 21 4-qubits QSVM

We can retrieve the kernel entries for each site and estimate the output spread due to the QPU noise.

It turns out that **some sites are less performant than other**. We can discard them based on how much they differ from the avgerage matrix.

By discarding only 4 sites out of 21, the spread halves.

- On average the good sites std is **0.044.**
- The kernel matrix std between all sample entries is **0.241.**

Data-driven spread effect on genetic runs

We simulated a gaussian noise on the kernel matrix entries up to the dispersion estimated from experimental data ($\sigma = 0.044$). Up to $\sigma = 0.03$, the genetic optimization succeeds exhibiting a positive trend throughout generations.

Conclusions

Physics

- **Modest** $\beta\beta$ **vs** β **classification accuracy overall** (~ 65%) for an ideal 5 × 5mm² pixel-size LArTPC.
- → Depleted argon and better spatial resolution are mandatory.
- Energy threshold heavily affects performances.
- Interesting technique for **other low energy physics channels in DUNE.**

Deep Learning

CNN and Transformer performances are equally good for most granularity/threshold conditions, despite the different data-handling.

Quantum classifier – QSVM

- The use of QSVMs have been demonstrated for this dataset.
- Although Quantum Advantage can't be claimed, simulated, genetic-optimized QSVMs exhibit promising performances thanks to genetic optimization.
- Commercially available NISQ hardware is likely to be exploitable for running the QSVMs we developed.