

NuGraph2: **A Graph Neural Network for Neutrino Event Reconstruction** G. Cerati (FNAL) **Neutrino Physics and Machine Learning 2024** Zurich — June 27, 2024

Introduction

CNN-based networks reshaped event reconstruction for neutrino physics

- GNN proved to be promising for track reconstruction at the LHC
 - naturally sparse
 - no image pre-processing
 - flexible structure

2016 JINST 11 P09001

Chapter 1: The Data

MicroBooNE Open Samples

• Two "overlay" samples: BNB inclusive and BNB intrinsic v_e

arXiv:2309.15362

https://microboone.fnal.gov/documents-publications/public-datasets/

Cosmic ray background and noise from data

MicroBooNE Open Samples

• Two "overlay" samples: BNB inclusive and BNB intrinsic v_e

2024/06/27 5

104 cm

arXiv:2309.15362

https://microboone.fnal.gov/documents-publications/public-datasets/

Simulated neutrino interaction

MicroBooNE Open Samples – Overview

- Inspired by FAIR principles (findable, accessible, interoperable, reusable data)
- Samples available under <u>"cc-by" license</u>. Template text for acknowledgment is provided. - requesting resulting software products to be made available
- Two formats: targeting LArTPC and broader data & computer science communities - **art/ROOT** is the same format as used by the collaboration.
- - Files are stored on persistent **dCache** pool area and made accessible with **xrootd**
 - HDF5 include a reduced subset of the art/ROOT information in a simplified format for usage by non-experts. • Files stored on **Zenodo**, providing citable DOI (digital object identifier) & versioning.
- Extensive documentation and tutorials are also made public.
 - Notebooks show how to access the data, demonstrate useful applications, define reference performance metrics

Sample	DOI	HDF5			artroot		
		N events	N files	size	N events	N files	size
Inclusive, NoWire	10.5281/zenodo.8370883	753,467	18	195 GB	1,046,139	24436	6.4 TB
Inclusive, WithWire	10.5281/zenodo.7262009	24,332	18	44 GB	24,332	720	136 GB
Electron neutrino, NoWire	10.5281/zenodo.7261921	89,339	20	31 GB	89,339	2151	761 GB
Electron neutrino, WithWire	10.5281/zenodo.7262140	19,940	20	39 GB	19,940	540	170 GB

Chapter 2: The Model

Breaking news!

NuGraph2: A Graph Neural Network for Neutrino Physics Event Reconstruction

A. Aurisano and V Hewes University of Cincinnati, Cincinnati, OH 45221, USA

G. Cerati and J. Kowalkowski Fermi National Accelerator Laboratory, Batavia, IL 60510, USA

> C. S. Lee and W. Liao Northwestern University, Evanston, Il 60208, USA

D. Grzenda, K. Gumpula, and X. Zhang^a Data Science Institute, University of Chicago, Chicago, IL 60637, USA

- Paper accepted by Phys. Rev. D [arXiv:2403.11872]
- Preprocessed training data set and trained model available on Zenodo
 - https://zenodo.org/records/12169756

Xiv:2403.11872] trained model available on Zenodo

• Main inputs to the GNN are the Hits

- hits are Gaussian fits to waveforms
- features: wire, peak time, integral, RMS
- currently using Hits associated to the neutrino interaction by Pandora

Main inputs to the GNN are the Hits

- hits are Gaussian fits to waveforms
- features: wire, peak time, integral, RMS
- currently using Hits associated to the neutrino interaction by Pandora
- Within each plane hits are connected in a graph using Delaunay triangulation
 - fully connected graph
 - both long and short distance edges
 - connect across unresponsive wire regions

Main inputs to the GNN are the Hits

- hits are Gaussian fits to waveforms
- features: wire, peak time, integral, RMS
- currently using Hits associated to the neutrino interaction by Pandora
- Within each plane hits are connected in a graph using Delaunay triangulation
 - fully connected graph
 - both long and short distance edges
 - connect across unresponsive wire regions

2023 J. Phys.: Conf. Ser. 2438 012091

Edge TypeData TypeLabeling SchemeAdDelaunay2DSimple86Window2DSimple76kNN2DSimple81Radius2DSimple78				
Delaunay2DSimple86Window2DSimple76kNN2DSimple81Radius2DSimple78	Edge Type	Data Type	Labeling Scheme	A
Window2DSimple76kNN2DSimple81Radius2DSimple78	Delaunay	$2\mathrm{D}$	Simple	86
kNN2DSimple81Radius2DSimple78	Window	2D	Simple	76
Radius2DSimple78.	kNN	2D	Simple	81
	Radius	2D	Simple	78.

Main inputs to the GNN are the Hits

- hits are Gaussian fits to waveforms
- features: wire, peak time, integral, RMS
- currently using Hits associated to the neutrino interaction by Pandora
- Within each plane hits are connected in a graph using Delaunay triangulation
 - fully connected graph
 - both long and short distance edges
 - connect across unresponsive wire regions
- Hit associations to 3D SpacePoints create "nexus" connections across graphs in each plane
 - Currently defined by "Space Point Solver"
 - SPs are not connected among themselves
 - No input features for SPs

Network architecture

- NuGraph2's architecture is an iterative message-passing network.
- Each message-passing iteration consists of two phases:
 - Planar block: pass messages internally in each plane.
 - Nexus block: pass messages up to 3D nexus nodes to share context information.
- Messages are based on a categorical embedding:
 - Each semantic category is provided with a separate set of embedded features, which are convolved independently.
 - Context information is exchanged between different particle types via a categorical cross-attention mechanism.

Planar block

Nexus block

Decoders

- The last step at the end of the message passing network are the decoder steps
- Paper describes two node classifications decoders:
 - Semantic: classify each hit by particle type
 - Filter: separate hits from neutrino interaction from background
 - Output both class-wise scores from the semantic decoder and a binary score from the filter decoder
 - Same learned features are used as input to all decoders
 - Different loss functions weighted based on per-task variance (arXiv:1705.07115)
- Work in progress on more decoders: neutrino flavor, vertex regression, object condensation
 - see Adam's talk!

NuGraph2

Performance on Simulation: Filter

- Decoder trained to separate neutrinoinduced hits from background (noise or cosmic-induced hits)
 - Pandora slicing tends to prioritize completeness over purity
- Performance metrics:
 - recall and precision: ~0.98

Performance on Simulation: Semantic

- Decoder trained to classify each neutrino-induced hit according to particle type
- Use five semantic categories:
 - MIP: Minimum ionizing particles (muons, charged pions)
 - HIP: Highly ionizing particles (protons)
 - EM showers (primary electrons, photons)
 - Michel electrons
 - Diffuse activity (Compton scatters, neutrons)
- Performance metrics:
 - recall and precision: ~0.95
 - consistency between planes around 98%
 - compared to ~70% without 3D nexus edges

		MIP	HIP	shower Assigned label	michel	diffuse
	d∎-	0.99	0.074	0.066	0.26	0.08
preci	HIP -	0.0069	0.91	0.016	0.022	0.034
SION	True label shower	0.0026	0.0071	0.88	0.15	0.072
(purit	michel	0.0011	0.0013	0.015	0.52	0.029
$\mathbf{\hat{s}}$	diffuse	0.0018	0.011	0.026	0.048	0.78

Performance on Simulation: Event Display

• Filter successfully rejects hits that are not from the neutrino interaction, including cosmic tracks that are close to it

(a) Filter truth

(b) Filter prediction

Performance on Simulation: Event Display

simple topology and also in higher multiplicity events.

(c) Semantic truth, filtered by truth

Semantic classification correctly classifies hits classes both in events with a

(d) Semantic prediction, filtered by prediction

Chapter 3: Deploying NuGraph2

Integration in LArSoft

- NuGraph2 is integrated in the software framework for LArTPC experiments, LArSoft
- Model compiled with JIT and run using the libtorch C++ library.
 - Integrated a package for Delaunay triangulation as well.
- Enables running in production workflows for LArTPC experiments!
- server (NuSonic: <u>arXiv:2009.04509</u>)

TimeTracker printout (sec)	Min	Avg	Max	Median	
Full event	0.0450458	3.36097	87.7468	0.237533	 1
source:RootInput(read)	0.000725606	0.00255304	0.019421	0.00131291	0.0
reco:nuslhits:NuSliceHitsProducer	0.0411265	0.116099	0.55599	0.0900547	0.
reco:sps:SpacePointSolver	0.000110578	2.48479	85.3879	0.000217748	1
reco:NuGraph:NuGraphInference	4.7356e-05	0.74844	5.22709	8.83935e-05	1
[art]:TriggerResults:TriggerResultInserter	1.4952e-05	2.38511e-05	6.7179e-05	2.1032e-05	9.5
end_path:rootOutput:RootOutput	2.915e-06	4.5257e-06	1.9485e-05	3.9445e-06	2.1
end_path:rootOutput:RootOutput(write)	0.000867838	0.008697	0.0783238	0.00176224	0.

- Inference results are stored in the Event record for usage in downstream reconstruction and analysis. Inference module takes 0.75 s per event event on CPU, including graph construction

Currently exploring more flexible integration methods based on NVIDIA Triton inference

First Look at Performance in MicroBooNE Data

- The filter decoder seems to overly reject shower hits from the neutrino data are being investigated.

• First tests on MicroBooNE data events passing a loose v_e CC preselection interaction, so domain shifts between the training data set and the application

First Look at Performance in MicroBooNE Data

- background.

• First tests on MicroBooNE data events passing a loose v_e CC preselection Encouraging performance for the semantic decoder: NuGraph2 correctly tags shower hits both from primary electrons (left plot) and photons (right) from $\pi 0$

First Look at Performance in MicroBooNE Data

- background.

• First tests on MicroBooNE data events passing a loose v_e CC preselection Encouraging performance for the semantic decoder: NuGraph2 correctly tags shower hits both from primary electrons (left plot) and photons (right) from $\pi 0$

Fermilab

Chapter 4: Interacting with NuGraph2

Network Explainability: Latent Space

- Explainability: Goal is to "open the black box" to build confidence and drive developments.
 - Find that some "standard" tools for GNN interpretability (e.g. GNNExplainer) struggle with our network
- First study is the visualization of latent space:
 - Cluster latent node features (320D space) and project in 2D for visualization
 - Clear separation between different categories is achieved by the last (5th) network message-passing iteration

ent space: and project in

Network Explainability: "Hub Nodes"

- Understanding the role of "hub" nodes
 - Feature of Delaunay triangulation: detached nodes have large edge multiplicity and connect nodes within and across objects
 - These nodes introduce a large degree of redundancy, but also create a bridge for nodes at beginning/end of an object
- Performed a pruning test:
 - Aiming at understanding how many edges are essential and what are their properties
 - Find that 12 is the lowest upper bound in multiplicity without affecting performance, when pruning edges uniformly in terms of length
- Demonstrates that there is a degree of redundancy up to a few 10% of the edges, and that both short and long edges matter.
 - Can also lead to network speedups, both for training and inference

I nodes have large and across objects dundancy, but also of an object

Injecting Physics Domain Knowledge: Michel electrons

- Michel electrons are the class least represented in our training dataset and the one with worst performance in terms of semantic classification
- Can we find ways to supplement the limited training data set and drive the network to learn better this category?
- A few ideas are being explored:
 - Michel electrons are the product of the decay at rest of a muon (MIP). Teach this correlation to the network by adding a decoder that predicts the fraction of hits in each class in the event
 - The Michel energy spectrum is a well defined function. Teach this property to the network by penalizing events where the sum of predicted Michel hit integrals is not compatible with the expected p.d.f.
- Results for these tests are coming soon!

JINST 12, P09014 (2017)

Injecting Physics Domain Knowledge: Augmented Features

- It turns out that GNNs are not aware of the structural role of nodes
 - They do not learn the graph structure
 - GNNs do not distinguish graphs that are isomorphic according to the Wesfeiler-Lehman test

- Adding the graph structural information (e.g. triangles, circles) may help with classification
 - This can be implemented by a structure-aware message passing which contains structural information about the nodes

Injecting Physics Domain Knowledge: Augmented Features

- Add structural and non-local features to nodes:
 - Δtime, Δwire between 2 closest nodes
 - distance to closest node D_{min}
 - edge multiplicity N_e

- Improves the network performance across the board
 - ~5% (relative) improvement for the Michel category

nominal

augmented

Conclusions

- NuGraph2 is a GNN for reconstruction in LArTPC detectors - competitive performance for filter and semantic classification tasks
- Deployment in experiments' workflows in ongoing - integrated in LArSoft, promising results in data
- Work ongoing to interpret and further improve the network - stay tuned for Adam's talk for NuGraph3 developments!

Acknowledgements

This document was prepared by the Exa.TrkX/NuGraph Collaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, Office of High Energy Physics HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. **Fermilab**

M. Voetberg, J. Kowalkowski (FNAL), H. Meidani, V. Grizzi (UIUC), D. Caratelli, M. Fang (UCSB), A. Aurisano, V Hewes (UCincinnati), D. Grzenda, K. Gumpula, X. Zhang (UChicago), C. S. Lee and W. Liao (NorthwesternU)

