Generative Modeling for LArTPC Images

Zev Imani

NPML 2024

The NSF Institute for Artificial Intelligence and Fundamental Interactions

Outline

- 1. Data Motivation
- 2. LArTPC Image Generation Attempts
- 3. Diffusion Methodology
- 4. Quality Tests (Abridged)
- 5. Distance Metrics
- 6. Takeaways

Liquid Argon Time Projection Chamber (LArTPC)

- Detector for HEP experiments
 - Ongoing neutrino research
 - Particle interaction images

Zev Imani

LArTPC Images

- Cropped image from detector
- Globally sparse, but locally dense

Why Generative Modeling

- Observing rare neutrino events requires analyzing large datasets
- Potential to be faster than traditional simulation methods
- New tool for reconstruction and analyses
- Another way of understanding our data
- Proof of concept ML application

How to Generate Images

- Our data **x** is sampled from some p(**x**)
- We don't know p(x) directly

How to Generate Images

- Instead, we sample from a known distribution $z \sim \mathcal{N}(0,1)$
- Learn a mapping $x = f_{\theta}(z)$

Attempt 1: Generative Adversarial Network

GAN Mapping

Validation LArTPC Data

Validation LArTPC Data

GAN Generated

GAN Mapping

GAN Mapping

• LArTPC images exist as thin manifold in image space

Attempt 2: VQ-VAE

Vector Quantized Variational Autoencoder

Attempt 2: VQ-VAE

Vector Quantized Variational Autoencoder

LArTPC VQ-VAE

Validation LArTPC Data

LArTPC VQ-VAE

Validation LArTPC Data

VQ-VAE Generated

What is Good Enough?

• No standard quality tests for LArTPC images

• 64x64 are too small for traditional physics analysis

• We developed several options

Semantic Segmentation Network (SSNet)

Zev Imani

Attempt 3: Diffusion

Attempt 3: Diffusion

Validation LArTPC Data

Attempt 3: Diffusion

Validation LArTPC Data

Diffusion Generated

Zev Imani

Zev Imani

Physics Quality Tests: Showers

Physics Quality Tests: Tracks

Additional Quality Tests

- High dimensional goodness of fit tests
 - Maximum Mean Discrepancy (MMD)
 - Sinkhorn divergence
 - Wasserstein-1 (EMD)
- SSNet-FID
- Turing test survey

- Scale up to larger images
 - Goal of 512x512 image size to do physics analyses
 - Use latent diffusion to overcome scaling issue

- Conditional generation on energy and particle type
- Improve generation speed and efficiency

Visualizing Distributions

- T-distributed Stochastic
 Neighbor Embedding (T-SNE)
- Nonlinear dimensionality reduction, maintains relative distance

T-SNE on LArTPC

• Pretty, but no clear structure

T-SNE on LArTPC

Euclidean T-SNE

Darker points =
 longer/more charge

Digression: Distance Metrics

• Euclidian distance (L2 norm) $\|m{x}\|_2 := \sqrt{x_1^2 + \cdots + x_n^2}$

Digression: Distance Metrics

• Euclidian distance (L2 norm) $\|m{x}\|_2 := \sqrt{x_1^2 + \cdots + x_n^2}$

- Earth Mover's Distance (EMD)
 - Wasserstein-1 distance
 - 'Natural' metric for particle physics

$$\operatorname{EMD}(P,Q) = \sup_{\|f\|_L \leq 1} \, \mathbb{E}_{x \sim P}[f(x)] - \mathbb{E}_{y \sim Q}[f(y)] \, .$$

$$\min_F \sum_{i=1}^m \sum_{j=1}^n f_{i,j} d_{i,j}$$
Digression: Distance Metrics

• Euclidian distance (L2 norm) $\| m{x} \|_2 := \sqrt{x_1^2 + \cdots + x_n^2}$

- Earth Mover's Distance (EMD)
 - Wasserstein-1 distance
 - 'Natural' metric for particle physics

.

 Separation of track and shower events

 Ongoing exploration of this data representation

EMD T-SNE

Key Takeaways

- 1. LArTPC data differs from natural images
 - Globally sparse, but locally dense

- 2. Diffusion is a versatile method of data generation
 - Can handle our LArTPC data

- 3. Development of some quality metrics for LArTPC images
- 4. Earth Mover's Distance is a useful metric for particle event data

Score-based Diffusion Models for Generating Liquid Argon Time Projection Chamber Images By Zeviel Imani, Shuchin Aeron, & Taritree Wongjirad <u>PhysRevD.109.072011</u>

Questions?

The NSF Institute for Artificial Intelligence and Fundamental Interactions

Backup Slides

(and skipped sections)

Mode Collapse

Nearest neighbors using
L2 Euclidian Norm distance

Zev Imani

Mode Collapse

 Nearest neighbors using Earth Mover's Distance (EMD)

Zev Imani

Physics Metrics: Chi-Squared

χ² Test	Track Length	Track Width	Shower Charge
10 Epochs	206	825	6458
50 Epochs	126	418	228
150 Epochs	130	175	382

Imani, Aeron, & Wongjirad; PhysRevD.109.072011

High Dimensional Goodness of Fit Tests

Fréchet Inception Distance (FID)

- Process:
 - 1. Get layer activations from classifier
 - Typically use Google's Inception v3 deepest activation layer (pool3)
 - 2048-dimensional activation vector
 - 2. Fit activations to multidimensional Gaussian distribution
 - 3. Find Wasserstein-2 distance between the Gaussians

• We can use activations from SSNet instead

SSNet-FID

Conditional 1: Statistical Reframe

Given random variables x (LArTPC image) and y (energy) we want to sample from p(x | y)

• Approach 1) Extend score: $s_{\theta}(\mathbf{x}, t) \rightarrow s_{\theta}(\mathbf{x}, t, \mathbf{y})$

• Or...

Conditional 2: Inverse Problem

• We know how to get **y** (energy) from **x** (LArTPC image)

• Bayes' Rule:
$$p(\mathbf{x}|\mathbf{y}) = \frac{p(\mathbf{x})p(\mathbf{y}|\mathbf{x})}{\int p(\mathbf{x})p(\mathbf{y}|\mathbf{x})d\mathbf{x}}$$

• Take gradient: $\nabla_{\mathbf{x}} \log p(\mathbf{x} \mid \mathbf{y}) = \nabla_{\mathbf{x}} \log p(\mathbf{x}) + \nabla_{\mathbf{x}} \log p(\mathbf{y} \mid \mathbf{x})$

score classifier

Score-based Diffusion Model

Y. Song, S. Ermon, arXiv:1907.05600

Data samples $\{\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_N\} \stackrel{\text{i.i.d.}}{\sim} p(\mathbf{x})$

Manifold Hypothesis

Add Diffusion

Perturbed density

Perturbed scores

Annealed Langevin Sampling

LArTPC Image Generation

Training Images

Generated Images

Zev Imani

Imani, Aeron, & Wongjirad; PhysRevD.109.072011

All Together Now

Where is the mapping?

Forward Stochastic Differential Equation (SDE)

Drift $\mathbf{f}(\mathbf{x}, t) dt$ Deterministic evolution $\mathbf{f}(\mathbf{x}, t) = -\mathbf{x} \frac{1}{2} \beta_t$ dt = time increment

Diffusion $g(t)d\mathbf{w}$ Scale factor $g(t) = \sqrt{\beta_t}$ $d\mathbf{w}$ = Brownian motion (Random walk)

Forward SDE

Zev Imani

Forward SDE

Zev Imani

Forward SDE

Reverse Stochastic Differential Equations (SDE)

Drift (Reverse) $\mathbf{f}(\mathbf{x},t) \mathrm{d}t$

Diffusion (Reverse) $g(t) \mathrm{d} \mathbf{ar{w}}$

score function $g^2(t) \nabla_{\mathbf{x}} \log p_t(\mathbf{x})$

Scale factor $g^2(t) = \beta_t$

Reverse SDE

Reverse SDE

Zev Imani

Yang Song et al., <u>arXiv:2011.13456</u>

Reverse SDE

Full Process

Imani, Aeron, & Wongjirad; PhysRevD.109.072011