

Searching for Dark Tridents with Convolutional Neural **Networks**

Luis Mora-Lepin on behalf of the MicroBooNE collaboration Neutrino Physics and Machine Learning Conference, ETH Zürich 25/06/2024

- The MicroBooNE detector and NuMI
- Overview of dark trident search
- A CNN for signal and background classification
- **Results**

MicroBooNE:

- Liquid argon time projection chamber (LArTPC)
- Active mass 85 tonnes
- Dimensions: $10.36 \times 2.56 \times 2.32 \text{ m}^3$
- **● At surface level**

Rich physics program:

- Neutrino physics (Oscillations, cross section)
- **BSM physics (This talk)**
- LArTPC R&D

MicroBooNE Data

- MicroBooNE has three wire planes. Each plane produces a 2D view of the charged particles interacting with the detector volume
- Spatial resolution of 3 mm per pixel
- Good calorimetric capacity
- The image shown here corresponds to the collection plane

604

Dark Tridents: A Dark Sector Portal µBooNE

- DM candidate can be produced at fixed-target facilities through neutral meson decays
- Off-axis search of DM scattering has been proposed in: **[arXiv:1809.06388](https://arxiv.org/abs/1809.06388)**
- Interaction channel: DM scattering with the emission of an on-shell dark photon

Production Scattering with Ar

Search Strategy

NuMI Beamline Side View

Search Strategy

000000

 $\mu \overline{BooNP}$

 \sim 30

Main Injector

120 GeV Beam

 $Ar(p_5)$

Searching for Dark Tridents with Convolutional Neural Networks, Luis Mora-Lepin 8

Ar One of the most problematic backgrounds are nu-Ar interactions producing neutral mesons or single

Z

 π^0

 ν_{ℓ}

photons

 ν_{ℓ}

 511

 511_1

Drift Time

0

Hocces

 μ BooNE

µBooNE

High charge

Low charge

Neutrino Background Simulation

Wire Number

Search Strategy

NuMI Beamline Side View

 $\overline{}60$

Main Injector

120 GeV Beam

 \sim 30

Horns

Signal or background?

Searching for Dark Tridents with Convolutional Neural Networks, Luis Mora-Lepin 11

A CNN for Background Rejection

- For this analysis we took advantage of the existing architecture developed for the Multi-Particle Identification Network (MPID)
- The CNN input are 512x512 MicroBooNE images cropped around the interaction vertex
- MPID's has filters with a size comparable to the activity expected on showers and tracks
- The final layer has been configured to output the probability of having either dark trident signal or background interactions

MPID details: [Phys. Rev. D 103, 092003](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.092003)

Training Set Preparation

Wire Number

Images are compressed by a factor of 6 on the time tick axis

uBooN

Time Ticks

- Cropping around of the interaction vertex obtaining an image of 512x512 pixels
- For training true vertex is used. In contrast for the actual analysis we use reco vertex (provided by pandora)

The images are stored in a user-friendly format using the LArCV package

A dedicated training/test set containing a benchmark signal sample and neutrino NCpi0 interactions was created. Cosmic rays tracks were also included

Network Training

- Training set size: 62879
- Hardware: NVIDIA V100
- Iterations: 11786 (\sim 5 epochs)
- Time: $~4$ hours
- Batch size: 32
- Learning rate: 0.001
- Adam optimizer
- Dropout layers and L2 regularization were implemented to control the overfitting
- Binary cross entropy loss and accuracy were used to monitor the training

Training Results

- The CNN achieves good separation of signal and background
- It reaches ~93% of accuracy
- Good generalization to signal samples simulated with different masses
- No signs of overfitting

µBooNE

Searching for Dark Tridents with Convolutional Neural Networks, Luis Mora-Lepin 16 and 16

Occlusion analysis

511

Drift Time

- In this test a zone of nxn pixels in the image is 'hidden' before passing it to the CNN
- The CNN score will vary if important pixels of the image are occluded
- Pixels at the beginning of the showers contribute with important features

Angular Dependance

- The electron-positron shower direction typically point back to the NuMI target
- On the other hand, less neutrinos are expected from this direction as a result of the focusing horns
- We study if the CNN is able to infer the typical dark trident direction respect to NuMI
- Note: The MPID network was trained with isotropic angular distributions

Inference Over Analysis Datasets

- The background prediction is composed of cosmic-ray (beam-off) interactions, and neutrino interactions produced inside and outside the cryostat
- The CNN also generalizes to events coming from these three background samples

Inference Over Analysis Datasets

- The background prediction is composed of cosmic-ray (beam-off) interactions, and neutrino interactions produced inside and outside the cryostat
- The CNN also generalizes to events coming from these three background samples
- We also checked the performance over data collected using the NuMI beam over a control region (CNN score < 0.5)

- The CNN score region above 0.5 is used to probe the dark trident hypothesis
- The scores are passed through a logit transformation which maps the interval (0.5,1.0) to (0, infinity)

The CNN score region above 0.5 is used to probe the dark trident hypothesis

uBooNE

- The scores are passed through a logit transformation which maps the interval (0.5,1.0) to (0, infinity)
- The number of candidates found in the NuMI data is consistent with the background expectation

Results

Drift Time

- The CNN score region above 0.5 is used to probe the dark trident hypothesis
- The scores are passed through a logit transformation which maps the interval (0.5,1.0) to (0, infinity)
- The number of candidates found in the NuMI data is consistent with the background expectation

MicroBooNE Limits

- The results obtained were used to set constraints to different combinations of the parameter space using the CLs method
- The limits obtained by MicroBooNE are the most stringent ones for dark photon masses below 100 MeV

Conclusions

- We have successfully implemented a CNN to discriminate dark trident interactions from neutrino interactions and cosmic rays
- The CNN was used to search for dark trident candidates in dataset collected using the NuMI beam
- A few candidates were found but the number is consistent with background expectation. New constraints on the model parameter space were obtained
- This technique can be generalized to other BSM models and LArTPC experiments
- Results published by PRL: *[Phys.Rev.Lett.](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.132.241801)* 132 (2024) [24, 241801](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.132.241801)

Backup

Searching for Dark Tridents with Convolutional Neural Networks, Luis Mora-Lepin 2008 2008 2009 2009 2009 2009 20

Training and Test Set

The MicroBooNE Detector

MicroBooNE Dataset

