

Neutrino Physics and Machine Learning 2024 CNN for track reconstruction and PID in the new HA-TPCs of the T2K near detector

Anaëlle Chalumeau

NPML2024 - 27/06/2024

<u>git repo</u> technote

Overview

T2K and its Near Detector ND280

- CNN for track reconstruction (the theory)
- CNN for track reconstruction (in practice)
- Results on momentum reconstruction
- Results on Particle IDentification

Tokai-to-Kamioka

 T2K detects neutrinos at both the Near Detector ND280 and at the Far Detector SK to study neutrino oscillations

Tokai-to-Kamioka

 T2K detects neutrinos at both the Near Detector ND280 and at the Far Detector SK to study neutrino oscillations

 Near Detector: measurement before oscillation of the beam spectrum and flavor composition

Tokai-to-Kamioka

 T2K detects neutrinos at both the Near Detector ND280 and at the Far Detector SK to study neutrino oscillations

- Near Detector: measurement before oscillation of the beam spectrum and flavor composition
- Need precise measurement at ND280, e.g. to distinguish the $v_{\rm e}$ bkdg from the v_{μ} signal

ND280 and its HA-TPCs

ND280 and its HA-TPCs

ND280 and its HA-TPCs

upgrade installed and taking data right now!

ND280 and its HA-TPCs

Anaëlle Chalumeau - NPML2024 - 27/06/2024

ERAM module frame (anode)

cathode

ND280 and its HA-TPCs

Anaëlle Chalumeau – NPML2024 – 27/06/2024

10

ND280 and its HA-TPCs

LPNHE

TZK

Encapsulated Resistive Anode MicroMegas (ERAM) Mesh @ GND Amplification gap: ~128µm DLC @ ~ 360V FR4 PCB FR4 PCB

х

ND280

Anaëlle Chalumeau - NPML2024 - 27/06/2024

11

Overview

- T2K and its Near Detector ND280
- CNN for track reconstruction (the theory)
- CNN for track reconstruction (in practice)
- Results on momentum reconstruction
- Results on Particle IDentification

Convolutional Neural Network

 Initial idea: use a CNN to extract particle momentum and PID from the detector "images" (assuming track ID and isolation)

Convolutional Neural Network

- Initial idea: use a CNN to extract particle momentum and PID from the detector "images" (assuming track ID and isolation)
 ResNet50 Model Architecture
- CNN choice: ResNet50

LPNHE

Convolutional Neural Network

- Initial idea: use a CNN to extract particle momentum and PID from the detector "images" (assuming track ID and isolation)
 ResNet50 Model Architecture
- CNN choice: ResNet50

LPNHE

TZK

Convolutional Neural Network

LPNHE

TZK

 Initial idea: use a CNN to extract particle momentum and PID from the detector "images" (assuming track ID and isolation)
ResNet50 Model Architecture

CNN for track reconstruction (in practice)

Simulation used

200 000 to 800 000 events generated

CNN for track reconstruction (in practice)

Simulation used

200 000 to 800 000 events generated

CNN for track reconstruction (in practice) Pipeline developped

(1) convert ROOT data into readable python data

CNN for track reconstruction (in practice) Pipeline developped

(1) convert ROOT data into readable python data

CNN for track reconstruction (in practice)

Hyperparameters

• Loss function: Mean Square Error:

torch.nn.MSELoss()

• Optimizer: Adam = variant of Stochastic Gradient Descent:

optimizer = torch.optim.Adam

• Hyper-parameters:

-batch size: 64 -epochs: usually in [20,50] depending on data size -initial learning rate = 0.001 or 0.01 -learning rate patience = 3

(no HPO performed, just hand-tuned)

- Regularisation: target standardisation and dropout (0.5)
- Train/validation/test split: 70%/15%/15%

Overview

- T2K and its Near Detector ND280
- CNN for track reconstruction (the theory)
- CNN for track reconstruction (in practice)
- Results on momentum reconstruction
- Results on Particle IDentification

Results on momentum reconstruction

larger angle range leads to worst resolution (more complexe/diverse data)

Training on different angular range

gaussian fits which extract μ , σ

Results on momentum reconstruction

Using 3 channels

Results on momentum reconstruction

Compared to the standard reconstruction method

trained on [100-2200] MeV range **but** tested on [100-1500] MeV to get rid of border effect

Results on Particle IDentification

(with a similar regression task, and not a classification one: prediction of the PDG code of the particles i.e. -11 or -13)

Prediction distributions

Results on Particle IDentification

Prediction distributions

(with a similar regression task, and not a classification one: prediction of the PDG code of the particles i.e. -11 or -13)

101 e + selection 11.3 < pag_code < -10.	for	e+	selection:		11.5	<	pdg.	_code	<	-10.5
--	-----	----	------------	--	------	---	------	-------	---	-------

for μ + selection: $-13.5 < pdg_code < -11.5$

Results on Particle IDentification

Selection performance

$$\begin{split} \text{eff} &= N_i^{\text{selected}} / N_i^{\text{generated}} \\ \text{pur} &= N_i^{\text{selected}} / \left(N_i^{\text{selected}} + N_j^{\text{selected}} \right) \end{split}$$

Anaëlle Chalumeau – NPML2024 – 27/06/2024

Simulated data from T2K ND280 HA-TPC have been reconstructed with a CNN

- we have demonstrated the feasibility of momentum reconstruction
 - we found a momentum resolution very similar to the standard reconstruction algorithm
 - **ς 8% momentun resolution at 1 GeV**
- we have shown **better PID performance** than the truncated mean method in use
- still many ways to improve: study edge effect, more features, different NN...

Back-up

both trained on [100-2200]MeV

Edge effect

Back-up ResNet50

Back-up ResNet50

layer name output size		18-layer	34-layer	50-layer	101-layer	152-layer		
conv1	112×112			7×7, 64, stride 2				
				3×3 max pool, stride 2				
conv2_x	56×56	$\left[\begin{array}{c} 3\times3, 64\\ 3\times3, 64 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$		
conv3_x	28×28	$\left[\begin{array}{c} 3\times3,128\\3\times3,128\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,128\\3\times3,128\end{array}\right]\times4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$		
conv4_x	14×14	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256\end{array}\right]\times2$	$\begin{bmatrix} 3\times3,256\\3\times3,256\end{bmatrix}\times6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$		
conv5_x	7×7	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$		
1×1		average pool, 1000-d fc, softmax						
FLO	OPs	1.8×10^{9}	3.6×10^9	3.8×10^9	7.6×10^9	11.3×10^{9}		

