

Deep learning for fast event reconstruction in the SNO+ scintillator phase and beyond

Mark Anderson¹ (anderson.mark@queensu.ca)</sup> & Cal Hewitt² (cal.hewitt@physics.ox.ac.uk)

on behalf of the SNO+ Collaboration

¹Queen's University, Kingston, Canada

² University of Oxford, Oxford, United Kingdom

Neutrino Physics and Machine Learning 2024 ETH Zürich

The SNO+ Detector

- Multipurpose neutrino physics experiment
- Located 2km underground at SNOLAB
 - ~6000m water equivalent, flat overburden
- Held within large cavity filled with 7kt of ultrapure water for shielding
- 12m diameter spherical acrylic vessel (AV)
- AV filled with 780t of liquid scintillator
 - LAB (bulk solvent) + PPO (fluor)
 - High light yield; ~250 hits/MeV
- Surrounded by ~9400 photomultiplier tubes (PMTs) to detect light from interactions
 - 18m diameter PMT support structure

UNIVERSITY OF

M. Anderson & C. Hewitt • NPML 2024

UNIVERSITY OF

SNQ

M. Anderson & C. Hewitt • NPML 2024

Position Likelihood

• Averaged distribution of **time residuals** derived from MC

 $t_{\rm res} = t_{\rm hit} - t_{\rm event} - t_{\rm ToF}$

- PMT hit time is observable
- Time of flight (ToF) is from candidate event position, $\vec{r}_{event} = (x, y, z)$, to hit PMT

UNIVERSITY OF

 Optimize event position and event time for likelihood that observed time residual distribution drawn from this PDF; product over the number of hit PMTs (N_{hits})

5

Position Likelihood

• Averaged distribution of **time residuals** derived from MC

 $t_{\rm res} = t_{\rm hit} - t_{\rm event} - t_{\rm ToF}$

- PMT hit time is observable
- Time of flight (ToF) is from candidate event position, $\vec{r}_{event} = (x, y, z)$, to hit PMT

$$\mathcal{L}_{\text{vertex}} = \prod_{i=1}^{\text{Nhits}} P(t_{\text{res},i})$$

$$-\ln(\mathcal{L}_{\text{vertex}}) = -\sum_{i=1}^{\text{Nhits}} \ln P(t_{\text{res},i})$$

 Optimize event position and event time for likelihood that observed time residual distribution drawn from this PDF; product over the number of hit PMTs (N_{hits})

Position Likelihood

- Light travels through three materials in simplest case: time of flight must be estimated with analytic light path calculator
- Time residuals distribution has dependences on energy and position; mitigated with effective corrections
 - Effective speed of light which scales linearly with N_{hits}
 - Separate time residual PDFs used for different radial shells

UNIVERSITY OF

Motivation for Machine Learning Methods

- Likelihood method is comparatively slow (relative to trained model)
- Likelihood method can fail to converge
- Potential to improve upon areas where likelihood method does not do as well (near the AV, neck)
- Independent, complementary approaches are always welcome
 - Identify and correct problems (in either algorithm)
 - Could be used as a seed to the likelihood method

Challenges of Machine Learning

- Not straightforwardly applied to the data
 - Inputs are not the same length from event to event
 - Geometry needs to be provided in some way (either in the data itself or in the architecture)
- Naïve solutions fail
 - Feeding the network a length ~9400 vector of mostly zeroes: typical event is too sparse
 - Projecting the 3D spherical detector onto a 2D surface: no clear way to do this (all projections will distort the original)

UNIVERSITY OF

Architecture 1: Convolutional Neural Network

- Network consists of a 1×1 convolutional feature extractor
- Input is the **set of PMT hit information**, $(x_{\text{hit}}, y_{\text{hit}}, z_{\text{hit}}, t_{\text{hit}})$, for each PMT
- **Commutative operation** (mean) applied over Nhits axis

UNIVERSITY OF

- Outputs **fixed-length**, **permutationinvariant** representation of size *F*
- New representation is fed to a standard fully-connected neural network which predicts the Cartesian coordinates of the event position, \vec{r}_{event}

M. Anderson & C. Hewitt • NPML 2024

SN

leen's

Architecture 2: Transformer

Readout

Slightly outperforms reading out from dummy token at top of stack No improvement from supplying N_{hits} and regressing event energy

UNIVERSITY OF

M. Anderson & C. Hewitt • NPML 2024

Datasets

- Models trained and evaluated on simulated single electrons
 - Uniform in energy from 0.5 10 MeV: covers (almost) all events of physics interest in SNO+
 - Uniformly distributed inside the acrylic vessel
 - Isotropic in momentum
- 1 million events in dataset of which 900,000 used for training; 5,000 for validation; 95,000 for evaluation

Results: residuals

14

UNIVERSITY OF

SNQ

ieen's

Results: residuals

M. Anderson & C. Hewitt • NPML 2024

Results: resolution / energy

M. Anderson & C. Hewitt • NPML 2024

16

UNIVERSITY OF

SNQ

Results: resolution / radius

M. Anderson & C. Hewitt • NPML 2024

17

UNIVERSITY OF

SN

Results: bias / energy

leen's

UNIVERSITY OF

SNQ

Results: bias / radius

M. Anderson & C. Hewitt • NPML 2024

19

UNIVERSITY OF OXFORD

leen's

SNQ

Results: inference time

	Inference time (per event)	
Method	CPU [event-by-event]	GPU [batched]
Neural network	~10 ms	< 1 ms
Transformer	~170 ms	< 1 ms
Likelihood	~150 ms	N/A

UNIVERSITY OF OXFORD SNO

Ueen's

Conclusions

- We present two neural network architectures which effectively ingest SNO+ events; sparse, unordered sets of PMT hits with a variable number of nonzero channels
- Deep learning approaches can provide gains in resolution and a significant reduction in radial bias compared to a maximum likelihood-based method
 - Effectively learns dependencies and allows asymmetric and otherwise difficult regions to be modelled without complex corrections to the likelihood method

Ongoing and Future Work

- Investigating direction reconstruction with promising results
 - Difficult in liquid scintillator due to dominance of isotropic scintillation light
- Studying simultaneous position and direction reconstruction
 - PMT hit patterns depend on both position (mostly) and direction
 - Provides the network with more information
 - Should lead to improvements in both
- Other architectures (e.g., GNNs) show promise