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Motivations
NuWro is a Monte Carlo neutrino event generator, created at the University of
Wroclaw.

https://github.com/NuWro

It simulates neutrino-nucleon and neutrino-nucleus reactions
▶ elastic and quasi-elastic scattering
▶ single pion production through ∆(1232) resonance including non-resonant

background
▶ deep inelastic scattering
▶ nuclear effects, two-body current contribution to (quasi-) elastic scattering

coherent pion production
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Motivations

With the help of Neural Network techniques, it is planned to accelerate and optimize
the NuWro generator.

There are some similarities between electron and neutrino scattering.

The first step towards this goal is to create a neural network describing
electron-nucleon scattering.
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Based on:
arxiv:2312.17298
B. Kowal, K.Graczyk,
A. Ankowski, R. Banerjee, H. Prasad and J. Sobczyk (NuWro team)

The goal
▶ Making the model independent way to predict inclusive electron-carbon scattering

cross-sections (based on the experimental measurements):

DNN(E, θ, ω) →
d2σ

d cos(θ)dω
(1)

DNN - Deep Neural Network prediction,
E = Energy, θ = scattering angle, ω =transfer of energy

▶ Development of techniques that allow us estimate the uncertainty of the
predictions of DNN.
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Data

▶ Data from the Electron Nucleus
Scattering Archive:
http://discovery.phys.virginia.
edu/research/groups/qes-archive/
notes.html

▶ we concentrate on electron-carbon
data

▶ a broad kinematic region: quasielastic
scattering, pion production, and the
onset of deep-inelastic scattering

▶ We remove data with the lowest ω
by applying an appropriate cut,
because they correspond to elastic
scattering and discrete nuclear state
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Data

▶ 11 independent datasets.

▶ the k-th dataset containing Nk points

Dk = {(Ei
k, θi

k, ωi
k, dσi

k, ∆dσi
k) : i = 1, . . . , Nk},

where dσi
k and ∆dσi

k are the i-th
measurement in k-th dataset and
corresponding uncertainty.

▶ ∆dσi
k includes statistical and systematic

uncertainties.

▶ The normalization λ, systematic uncertainty, is
taken into consideration.

Abbrev. Number
of points

Arri1995 56
Arri1998 398
Bagd1988 125
Bara1988 259
Barr1983 1243
Dai2018 177
Day1993 316
Fomi2010 359
O‘Con1987 51
Seal1989 250
Whit1974 31
Total 3265
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Potential problems

▶ Cross-section values in ineffective, for DNN, range domain
→ re-scale the cross-sections (rescaled data < 1)

dσ →
(

109

1372E cos(θ/2)
cos(θ/2)2

4E2 sin(θ/2)4

)−1

dσ, (2)

▶ Additional imput parameters, that depend on the others, to achieve fitting :

(E, ω, θ) → (E, ω, θ, cos(θ), Q2)

▶ DNN may over-fit the data
▶ How to estimate the uncertainty of the predictions?
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DNN: Model A (Bootstrap model)

▶ 10 blocks with 300 fully connected neurons and following batch normalization
layer

hidden layer of units
batch nor. layer

▶ Batch Normalization (Ioffe and Szegedy, arxiv:1502.03167): re-centering and re-scaling inputs
of the leyers, improves optimization and regularize the model
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DNN: Model B (MC Dropout model)

▶ 10 blocks with 300 fully connected neurons and following batch normalization
layer and dropout leyer

hidden layer of units
batch nor. layer

▶ Dropout layer: In every layer, some hidden units are dropped from the processing
the signal (forward and backward), with a probability p [ Hinton, et al., arXiv:1207.0580.,]

▶ improves generalization
▶ prevents overfitting
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Model A: Bootstrap approach

▶ Efron (1979): Bootstrap methods
▶ Adapted for neural networks by Tibshirani

(1996) and Breiman (1996).

i For each data sample, we have a
Gaussian distribution with
- mean = data point σi

k

- std. deviation = uncertainty ∆σi
k

ii we draw M = 50 bootstrap (clone)
datasets from Gaussian distributions

iii For each bootstrap (clone) data set,
obtain DNN fit.

iv Averaging over the models prevents
overfitting. Get the mean and
standard deviation
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Model B: MC Dropout approach

▶ We keep dropout layers active in
training mode

▶ We obtain one DNN fit

→ To make prediction:
▶ We keep dropout layers active in

inference mode
i compute M = 50 times the response

of the network for a given input.
ii average over the predictions, get the

mean and standard deviation
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Systematic Normalization

χtot =
11∑

k=1

[
χ2

k(λk) +
1
2

(1 − λk

∆λk

)2
]

,

χ2
k(λk) =

1
2

Nk∑
i=1

(
dσi

k − λkdσfit
i (Ei

k, θi
k)

∆dσi
k

)2

Abbrev. ∆λk

Arri1995 4.0%
Arri1998 4.0%
Bagd1988 10.0%
Bara1988 3.7%
Barr1983 2.0%
Dai2018 2.2%
Day1993 3.4%
Fomi2010 4.0%
O‘Con1987 5.0%
Seal1989 2.5%
Whit1974 3.0%
▶ λk’s are hyperparameters
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Normalization and data consistency

Abbrev. Norm. model A model B
uncert. λk λk(p = 0.01)

Arri1995 4.0% 1.01 1.02
Arri1998 4.0% 1.00 0.96
Bagd1988 10.0% 1.03 1.06
Bara1988 3.7% 1.01 0.98
Barr1983 2.0% 0.99 1.02
Dai2018 2.2% 1.00 0.97
Day1993 3.4% 0.99 0.98
Fomi2010 4.0% 1.01 0.96
O‘Con1987 5.0% 1.02 1.01
Seal1989 2.5% 1.02 1.04
Whit1974 3.0% 0.93 0.93
▶ A tension between Whit1974 and the rest of datasets?
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Numerical Analysis

▶ Jax package

▶ HDF5 to store and organize data

▶ AdamW algorithm with decay
width 0.004

▶ Minibatch configuration with five
batches

▶ We split the dataset into training
and test datasets, with a
proportion of 9:1
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Calibration of MC Dropout

* we may expect similar results between
bootstrap and Bayesian approaches
Efron, Bayesian inference and the parametric bootstrap,

(2012)

▶ Run model A (dropout) for several p
values

▶ Compute χ2(test)

▶ After calibration, we choose Dropout
Model with p = 0.01

▶ Mean[uncertainty/true value](test
data)
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Histograms: Model A, Bootstrap (top) and Model B, MC Dropout
(bottom)

On the test data set, dropout p=0.01
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Results: Model A (bootstrap) and Model B (dropout)
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▶ training and test points
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DNN vs. Spectral function
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▶ Model A Bootstrap and Model B MC Dropout (p=0.01)
▶ Spectral function QE scattering, Ankowski, Benhar, Sakuda, PRD 91, (2015)

03300
▶ Energy of 600 MeV relevant for neutrino-oscillation experiments such as T2K and

the Short Baseline Neutrino program
▶ Bootstrap model generalizes better
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Model A Bootstrap vs. Gomez et al.
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▶ data: Gomez et al., PRD 49,
(1994) 4348. (deep inelastic
scattering data)
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Summary

▶ we obtained fits to electron-carbon data using to methods: dropout and
bootstrap

▶ we compared their predictions to
▶ a test dataset,
▶ a dataset lying beyond the covered kinematic region,
▶ a theoretical predictions obtained within the spectral function approach

▶ Models reproduce the data well but Model A generalizes better than Model B

▶ Both methods take into account a statistical and systematic uncertainties

* available from https://github.com/bekowal/CarbonElectronNeuralNetwork
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