

Testing the new electronics of the CMS phase I upgrade pixel detector

Riccardo Del Burgo on behalf of CMS PhD seminar 24 November 2016

LHC and CMS

p-p collision13 TeV at nominal luminosity25 ns bunch spacing

expected average of ~ 25 proton-proton collisions per bunch crossing (pileup)

proton

beam

proton beam

High particle fluxes close to the interaction point (IP)

The Pixel Detector is the innermost detector

CMS Pixel Detector

CMS

Feature and purpose:

- Reconstruct the track of particles with high precision(res ~10µm)
- High tracking efficiency
- Efficient tagging of long lived particle
- Primary vertex and impact parameter measurement
- Provide seeds for track reconstruction

Layout:

- 3 layer in the barrel region (r: 4 7 11 cm)
- 2 disk for each side in the forward region

Pixel Module Sensor:

- n+ on n silicon bulk 100µm x 150µm
- 16 Read Out Chips (ROC) per module
- Each ROC serves a 52x80 pixel matrix
- 56 millions pixel

LHC/HL-LHC Plan

LHC / HL-LHC Plan

LHC									HL	HL-LHC		
Run 1		Run 2				Run 3				Run 4 -	5	
		LS1	13 TeV	EYETS 1	3.5-14 TeV	LS2	14 TeV			LS3	14 TeV	ener
7 TeV	8 TeV	splice consolidation button collimators R2E project				injector upgrade cryo Point 4 DS collimation P2–P7(11 T dip.) Civil Eng. P1-P5			cryolimit interaction regions	HL-LHC installation	5 to 7 x nominal luminosity	
2011	2012	2013 2014	2015 20	2(7	2018	2019 2020	2021	2022	2023	2024 2025	2026	2037
4	75% nominal luminosity	experiment beam pipes	nominal luminosi			experiment upgrade phase 1	2×1	nominal lumir	radiation damage nosity	experiment upgrade phase 2		
	30 fb ⁻¹		EFF		150 fb ⁻¹			F	300 fb ⁻¹		3000 fb	-1 integrated luminosit
Run perfo	1: exce ormanc	ellent 2010 e L=(1	6 13 TeV x10 ³⁴ cm	′ 1 ⁻² S ⁻¹)	Excee Hit no	ed nominal ominal ener	lumin Gy	osity	Pla <pl< td=""><td>n to double i J> ~50</td><td>t</td><td></td></pl<>	n to double i J> ~50	t	

CMS Pixel Phase I Upgrade

Will allow to maintain the current level of performance under high luminosity conditions.

New digital readout :

- 40MHz → 400Mbit/s
- increased buffer size

Layout upgrade:

- 4th pixel layer and 2 extra disc for FPIX
- BPix module 768 \rightarrow 1184
- BPix pixel 48M →79M

Improved material budget:

- moved electronic to higher η
- lighter mechanic
- CO2 cooling

- Reduced dead time and data loss
 Improved track seeding and vertex reconstruction for large pile-up
 - Improved IP resolution
 - Less multiple scattering and photon conversion

Supply Tube

The supply tubes allow the data readout and the programming of the modules and supply power and cooling.

Supply Tube

Modules connection

and cabling

Sector

Read-out

Test bench at UZH

The test stand includes a slice of the CMS pixel DAQ system and all components of the upgraded readout chain together with a number of detector modules.

Supply Tube

Testing procedure (room temperature) High and low voltage distributions Devices programming and registers readout, functionality tests POHs laser functionality and fiber connections quality Communications and programming the modules Data stream readout Cold box test

Supply Tube Diagram

Riccardo Del Burgo

10

Test POH and optical fiber connections

This test aims to check the functionality of the Pixel Opto Hybrid (POH) laser, the quality of the optical fibre connections and the performance of the digital data transmission. The digital data stream coming from the module is converted from an electrical to an optical signal by the POH.

Test Module Programming and trigger delay

First one checks the communications and programming of the modules, then the trigger signal delay among different modules is tuned depending on the module layer, the pseudo- rapidity and cable length.

Test data transmission

Thanks!

Riccardo Del Burgo

14

Hit efficiency and transverse resolution

Riccardo Del Burgo

16

Material : rad len vs n

Sample	e and Conditions	Tracking I	Efficiency (%)	Track Fake Rate (%)		
Sample	PU/DL/Cuts	Current	Upgrade	Current	Upgrade	
Muon	0/No/Cleanup	97.4	98.1	0.0	0.0	
Muon	0/Yes/Cleanup	93.9	97.9	0.0	0.0	
Muon	50/No/Cleanup	90.1	94.9	0.22	0.17	
Muon	50/Yes/Cleanup	81.5	94.4	0.23	0.17	
tī	0/No/Default	89.6	93.5	0.71	0.40	
tī	0/Yes/Default	85.6	93.2	0.68	0.41	
tī	50/No/Default	84.9	92.2	8.72	5.09	
tī	50/Yes/Default	79.7	92.0	9.49	5.13	

Eff/Fake rate for actual and phase I pixel detector w/wo pile up and ROC dynamic data loss

Supply Tube Testing

Two independent setups: Electronic test and Power test

Power Distribution Test

DCDC - Extension Board - Connector Board - Load Board

Load Board

Design and assembly by Daniel Hernandez Garland

Riccardo Del Burgo

21

Mechanic on the mandrel

