

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

PhD Seminar (ETH ML H 43)

November 24th, 2016

Search for Electroweak Production of Supersymmetry in Final States with Multiple Leptons at the CMS Experiment

an executive summary

Constantin Heidegger Institute for Particle Physics, ETH Zürich

Outline

- Supersymmetry
- The CMS Experiment at the CERN LHC
- Signatures of EWK SUSY
- Search Strategy
- Results With Early 2016 Data
- Future Plans

Supersymmetry (SUSY)

- * standard model (SM) has several open questions
 - + hierarchy problem, flavor mixing, dark matter, dark energy, ...
- need a theory beyond the SM
- * supersymmetry (SUSY) one of them, able to deliver answers to many questions
 - hierarchy problem, dark matter candidate, unification?, ...
- * minimal-supersymmetric SM (MSSM) doubles the particle spectrum of SM
- SUSY searches
 - direct: search for new particles
 - indirect: deviations from SM (e.g. cross sections different to SM prediction)
- SUSY not yet experimentally observed

What do we Look for?

- * what is electroweak SUSY?
 - production of particles interacting via the electroweak force
 - here: search for pair production of charginos (CI) and neutralinos (N2)
- * why search for electroweak SUSY?
 - if gluinos / squarks are very massive, electroweak SUSY may dominate
 - naturalness: gaugino mass is of the order of H boson mass
- * why conducting a leptonic search?
 - + CI and N2 may have significant branching ratios to W, Z or sleptons, which can decay to leptons
 - + depending on the specific model, can have a number of hard and isolated leptons in the final state
 - Iow standard model backgrounds producing these leptonic final states
 - + expect less additional hadronic activity than for gluino-gluino production (clean leptonic final states)
- * what do we look for?
 - * 3 principal final states: 2 leptons of same sign, 3 leptons or more than 3 leptons

CIN2 production

8TeV Results - Benchmark for 13TeV Scenario

- * 2009-2012 center-of-mass energy $\sqrt{s} = 8$ TeV
- * search for EWK SUSY already done:
 - combination with results from other analyses
 - no evidence for SUSY found (pity!)
 - exclusion of sparticle masses up to ~700GeV
- * since 2015: $\sqrt{s} = 13$ TeV
- early searches focus on strong SUSY production (due to larger xsec)
- * 2016 is the interesting period for EWK SUSY
 - more data gives sensitivity to low-xsec models
 - early 2016 data: already presented at ICHEP2016
 - full 2016 dataset: being analyzed now!

LHC Accelerator Chain

Total weight 12500 t, Overall diameter 15 m, Overall length 21.6 m, Magnetic field 4 Tesla

CMS Detection Principle

EWK SUSY Signature

e.g. chargino-neutralino (CIN2) production

Typical signature of a leptonic SUSY process:

- multiple hard and isolated charged leptons in the central part of the detector
- * these leptons are prompt, i.e. produced by W, Z or **sparticles**
- * large missing energy in the plane transverse to the beam (MET) due to unidentifiable particles

Three "Classes" of Models

All Models Considered in this Analysis

Search Strategy

- so-called ,,cut-and-count analysis"
- define important kinematic objects:
 - + electrons, muons, jets, MET
- * define regions of phase space (~150 ,,signal regions", SR) according to key observables:
 - MET (missing energy), MII (invariant mass of lepton pair), MT (transverse mass), MT2(two hardest leptons)
- count the number of events in each SR
- * compare to the expected number of background events per SR
- * hypothesis test: could background alone produce the observed number of events?
- * result either significance (observation) or upper limit (exclusion) at 95% confidence level

Lepton Identification

- sources of leptons
 - + prompt = a lepton produced at primary vertex in a decay of W or Z boson (or sparticle decay)
 - nonprompt = due to misreconstruction of the leptons in the detector
- * source of nonprompt leptons depends on the flavor
 - nonprompt electron = mostly light-flavor jets (pions)
 - nonprompt muons = mostly genuine muon within a heavy-flavor jet
 - nonprompt taus = mostly jets
- designed an Multivariate Analysis method (MVA)
 to distinguish prompt leptons from nonprompt leptons
 - significant gain in signal acceptance / background rejection w.r.t. ,,conventional" identification of leptons
- residual nonprompt lepton background needs to be estimated with dedicated method

Background Composition

- expected background composition in different final states (taken from simulated events)
- * behold of the log scale!

Background Estimation

- * most important backgrounds:
 - + 3 light leptons: standard model WZ
 - + 3 leptons with taus: residual nonprompt lepton background
 - + 4 leptons: standard model ZZ
- WZ estimation
 - estimate from simulated events
 - assess normalization in WZ control region
 - systematic uncertainties extracted from the Wy shape
- ZZ estimation
 - estimate from simulated events

Muon channel MET shapes (MC)

Background Estimation

- * most important backgrounds:
 - 3 light leptons: standard model WZ
 - + 3 leptons with taus: residual nonprompt lepton background
 - + 4 leptons: standard model ZZ
- nonprompt backgrounds
 - data-driven ,,tight-to-loose method"
 - measure probability for a nonprompt lepton to be identified as a ,,good lepton" in a dedicated measurement region
 - use this probability in order to estimate background contribution
 - + "closure test": compare data-driven estimation to estimation using generator information
- other backgrounds (photon conversion, rare SM processes)
 - + estimate from simulated events (partially using control regions for normalization)

ETH zürich

Results With Early 201

- Physics Analysis Summary (PAS) available: <u>http://cds.cern.ch/record/2205168?In=en</u>
 - paper in preparation, to be out soon
- * presented at ICHEP2016

Interpretations

- no evidence for EWK SUSY found in early 2016 data
- setting exclusion limits on sparticle masses and model xsec

Summary and Future Plans

- * SUSY is a promising candidate to answer open questions of SM
- searching for EWK production of SUSY with multiple leptons
 - different simplified models available targeting different slepton scenarios
 - discussed search strategy and critical points
 - results with early I3TeV data exclude sparticle masses up to ITeV
- * search is repeated with full 2016 data set
 - will be sensitive to Higgsino models
 - combine results with other analyses (as done for 8TeV search)
 - push exclusion limits even higher (or finally <u>find SUSY</u>)

End

The ECOP Leptonic Team

Cristina Botta, Marco Peruzzi, Giovanni Petrucciani _{CERN}

Constantin Heidegger, Jan Hoss, Matthieu Marionneau ETH Zürich

Nacho Suárez, Pietro Vischia, Jesús Vizán Universidad de Oviedo

Santiago Folgueras Purdue University

CERN

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Appendix

EWK SUSY vs. Strong Production

- different signatures in EWK SUSY w.r.t. strong production
- e.g. compare T1tttt (leading model for RA5 SSDL analysis) to TChiNeuWZ (one of the leading models for EWK SUSY trilepton analysis)

gluino-gluino production

- up to 4 hard, isolated, central leptons from W decays
- * also a number of hard, central (b-) jets
- * large MET from stable LSP (+ v from W)

chargino-neutralino production

- 3 hard, isolated, central leptons from W and Z decays
- no additional jets
- * large MET from stable LSP (+ v from W)

Nonprompt Background Estimation

fake leptons

- + TT+Jets, DY+Jets or WW+Jets produces I-2 jets passing lepton ID (=fake lepton)
- + use data-driven technique "fake ratio method" to estimate this background
- + fake ratio (FR): probability for a fake to pass the tight lepton ID given it has passed the fakable ID
- + measure the number of loose leptons in a control region \rightarrow gives estimate of the fakes in SR
- we can benefit from many improvements in this method for RA5 and RA7 analyses (e.g. cone correction)

fake events = # events with loose-not-tight leptons x FR/(I-FR)

simplified FR method in single-lepton events

