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Section 1

Motivation
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Motivation

diamond as possible future material for the tracking detectors of the LHC
innermost layers → highest radiation damage
current detector designed to withstand 250 fb−1 of integrated luminosity

▶ High-Luminosity LHC: replace detector every 12 month
→ look for more radiation hard detector designs and/or materials

Figure: CMS Barrel Pixel Detector upgrade with end caps
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Section 2

Diamond Detectors and Materials
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Diamond as detector material

Diamond as detector material

7 − 10 times smaller charge loss due to radiation damage than in silicon

signals (electrons created by a charged particle) half the size of silicon

→ diamond becomes superior than silicon at a certain irradiation

other advantageous properties:
▶ isolating material → negligible leakage current → power saving
▶ high thermal conductivity → heat spreader for electronics
▶ large band gap → no cooling required
▶ high charge carrier mobility → fast signals
▶ working principle like a solid state ionisation chamber → no pn-junction required

disadvantages:
▶ high price
▶ some not fully understood behaviours
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Detector designs

Detector designs

Investigation of two different detector designs
▶ planar diamonds

⋆ exchange of material
▶ 3D diamonds

⋆ new type of detector

(a) prototype (b) on CMS-Pixel chip

Figure: 3D diamond detectors
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Artificial diamond types

Artificial diamond types

used diamonds artificially grown with a chemical vapor deposition (CVD) process
investigation of two different diamond types:

(a) single-crystalline CVD (b) poly-crystalline CVD

grown on existing diamond crystal
only small sizes (∼0.25 cm2)
larger signals than pCVD (5 : 3)

grown on Si substrate with
diamond powder
large wafers (5 cm to 6 cm �)
non-uniformities and grains
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Artificial diamond types

Diamonds in CMS

scCVD diamond pixel detector used in Pixel Luminosity Telescope (PLT)
▶ goal: stand-alone luminosity monitor for CMS

observation of a signal dependence on incident particle rate:

Consequences:
investigation of the rate effect in scCVD diamonds
using pCVD diamond and prove that they show no rate dependence
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Section 3

Rate Studies at PSI
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General information

Beam line at Paul Scherrer Institute (PSI)

High Intensity Proton Accelerator (HIPA) at PSI (Cyclotron)
590 MeV proton beam with beam current up to 2.4 mA

▶ ∼1.4 MW → most powerful proton accelerator in the world
using beam line πM1 with 260 MeV/c positive pions (π+)
tunable particle fluxes from 2 kHz/cm2 to 10 MHz/cm2
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General information

Measurements

performing several beam tests starting in 2013
using a modular self-built beam telescope with two possible setups:

▶ pad setup (testing whole diamonds as single pad detector)
▶ pixel setup (testing diamond sensors implanted on CMS-Pixel Chips)

investigating several materials and devices
▶ scCVD pad detectors (reproduce rate effect)
▶ pCVD pad and pixel detectors
▶ very first 3D pixel detector

studying non-irradiated and irradiated devices (up to 1 × 1016 neq/cm2)

M. Reichmann (ETHZürich) Diamond Beam Tests 24th November 2016 12 / 24



Motivation Diamond Detectors and Materials Rate Studies at PSI 3D Detectors at CERN Conclusion

Setup

Setup

4 tracking planes with analogue CMS pixel chips
2 diamond pad detectors
scintillator for precise trigger timing: sigma of 1.3(1) ns
resolution: ∼80 µm × 50 µm
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Setup

Schematics

using PSI DRS4 Evaluation Board as digitizer for the pad waveforms
using Digital Test Board (DTB) and pXar software for the telescope readout
global trigger as coincidence of fastOR self trigger and scintillator signal
EUDAQ as DAQ framework

M. Reichmann (ETHZürich) Diamond Beam Tests 24th November 2016 14 / 24



Motivation Diamond Detectors and Materials Rate Studies at PSI 3D Detectors at CERN Conclusion

Setup

DAQ

custom-built trigger unit to process the single triggers and provide global one for all
devices
saving event based data stream as binary file using EUDAQ
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Analysis and Results

Waveforms
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most frequented peak (∼70 ns): triggered signal
other peaks originate from other buckets (→ resolve beam structure of ≈19.7 ns)
system does not allow signals in pre-signal bucket due to fastOR trigger deadtime
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Analysis and Results

Pulse Height Calculation
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finding the peak in the signal region
integrating the signal in time fixed asymmetric integral around peak
same integration for pedestal (base line → noise)
optimising the integral width by highest SNR (Integral / Pedestal Sigma)
subtracting the pedestal from the signal integral on event-wise basis
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Analysis and Results

Pulse Height Distribution and Signal Maps
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(a) single-crystalline
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Analysis and Results

Signal vs. Particle Flux

after all analysis steps: look for rate
dependence of pCVD diamonds

found diamond pad detectors that show
no or very little dependence on rate

no dependence up to 1 × 1016 neq/cm2

large systematic errors due to
reproducibility

To do:
test higher irradiated samples

improve reproducibility

prove the same for pixel detectors
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Section 4

3D Detectors at CERN
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Working Principle of a 3D Detector

Working Principle of a 3D Detector

insert electrodes perpendicular to the plane
▶ reduce drift distance
▶ increase collected charge in detectors with limited mean free path

one readout electrode surrounded by four bias electrodes
in diamond electrodes formed with a pulsed laser

▶ transition of diamond to conducting material (graphitic material i.a.)

Figure: array of four 3D cells, bias electrodes in red, readout electrodes in green
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Beam Tests at CERN

Beam Tests at CERN

using more than 20 years old fixed telescope at SPS at CERN (high spatial
resolution)
testing multiple 3D strip detectors
basic working principle has been proven
full charge collection not yet reached in pCVD
improve fabrication technique

Figure: Strassbourg Telescope
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Section 5

Conclusion
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Conclusion

High Luminosity LHC requires a new detector technology due to the highly increased
radiation damage

diamond detector designs viable option due to its radiation tolerance, among other
advantages

scCVD diamonds not suitable due to signal dependence on particle flux after
irradiation

pCVD diamonds show no rate dependence up to fluxes of 10 MHz/cm2 and
irradiations up to 1 × 1016 neq/cm2

successfully proven the working principle of a 3D diamond detector

tested the very first 3D-Pixel detector

Ultimate Goal:
build fully working pixel detector

M. Reichmann (ETHZürich) Diamond Beam Tests 24th November 2016 24 / 24


	Motivation
	Diamond Detectors and Materials
	Diamond as detector material
	Detector designs
	Artificial diamond types

	Rate Studies at PSI
	General information
	Setup
	Analysis and Results

	3D Detectors at CERN
	Working Principle of a 3D Detector
	Beam Tests at CERN

	Conclusion

