	00	

Beam Tests Investigating Diamond as Detector Material

Michael Reichmann

M. Reichmann (ETHZürich)

Diamond Beam Tests

Table of contents I

Motivation

- 2 Diamond Detectors and Materials
 - Diamond as detector material
 - Detector designs
 - Artificial diamond types

8 Rate Studies at PSI

- General information
- Setup
- Analysis and Results
- 4 3D Detectors at CERN
 - Working Principle of a 3D Detector
 - Beam Tests at CERN

Conclusion

Motivation		

Motivation

Motivation		
	00	

Motivation

- diamond as possible future material for the tracking detectors of the LHC
- \bullet innermost layers \rightarrow highest radiation damage
- current detector designed to withstand $250 \, \text{fb}^{-1}$ of integrated luminosity
 - High-Luminosity LHC: replace detector every 12 month
- ullet
 ightarrow look for more radiation hard detector designs and/or materials

Figure: CMS Barrel Pixel Detector upgrade with end caps

Diamond Detectors and Materials		

Diamond Detectors and Materials

	Diamond Detectors and Materials		
		00	
Diamond as detec	tor material		

Diamond as detector material

- $\bullet~7-10$ times smaller charge loss due to radiation damage than in silicon
- signals (electrons created by a charged particle) half the size of silicon
- ullet ightarrow diamond becomes superior than silicon at a certain irradiation
- other advantageous properties:
 - \blacktriangleright isolating material \rightarrow negligible leakage current \rightarrow power saving
 - high thermal conductivity \rightarrow heat spreader for electronics
 - large band gap \rightarrow no cooling required
 - high charge carrier mobility \rightarrow fast signals
 - \blacktriangleright working principle like a solid state ionisation chamber \rightarrow no pn-junction required
- disadvantages:
 - high price
 - some not fully understood behaviours

	Diamond Detectors and Materials		
		00	
Detector designs			

Detector designs

- Investigation of two different detector designs
 - planar diamonds
 - ★ exchange of material
 - 3D diamonds
 - new type of detector

(a) prototype

(b) on CMS-Pixel chip

Figure: 3D diamond detectors

	Diamond Detectors and Materials		
		00	
	•O	0000	
Artificial diamond	types		

Artificial diamond types

- used diamonds artificially grown with a chemical vapor deposition (CVD) process
- investigation of two different diamond types:

(a) single-crystalline CVD

- grown on existing diamond crystal
- only small sizes (\sim 0.25 cm²)
- larger signals than pCVD (5 : 3)

(b) poly-crystalline CVD

- grown on Si substrate with diamond powder
- large wafers (5 cm to 6 cm ∅)
- non-uniformities and grains

	Diamond Detectors and Materials		
		00	
	00		
Artificial diamond	types		

Diamonds in CMS

- scCVD diamond pixel detector used in Pixel Luminosity Telescope (PLT)
 - goal: stand-alone luminosity monitor for CMS
- observation of a signal dependence on incident particle rate:

Consequences:

- investigation of the rate effect in scCVD diamonds
- using pCVD diamond and prove that they show no rate dependence

M. Reichmann (ETHZurich)

	Rate Studies at PSI	

Rate Studies at PSI

		Rate Studies at PSI	
		•0	
Conoral information	20		

Beam line at Paul Scherrer Institute (PSI)

- High Intensity Proton Accelerator (HIPA) at PSI (Cyclotron)
- 590 MeV proton beam with beam current up to 2.4 mA
 - $\blacktriangleright~\sim 1.4\,\text{MW} \rightarrow$ most powerful proton accelerator in the world
- using beam line π M1 with 260 MeV/c positive pions (π^+)
- \bullet tunable particle fluxes from $2\,kHz/cm^2$ to $10\,MHz/cm^2$

	Rate Studies at PSI	
	00	
Conoral informatio		

Measurements

- performing several beam tests starting in 2013
- using a modular self-built beam telescope with two possible setups:
 - pad setup (testing whole diamonds as single pad detector)
 - pixel setup (testing diamond sensors implanted on CMS-Pixel Chips)
- investigating several materials and devices
 - scCVD pad detectors (reproduce rate effect)
 - pCVD pad and pixel detectors
 - very first 3D pixel detector
- ullet studying non-irradiated and irradiated devices (up to $1\times10^{16}\,\text{neq/cm}^2)$

		Rate Studies at PSI	
		● 00	
	00	0000	
Setup			

Setup

- 4 tracking planes with analogue CMS pixel chips
- 2 diamond pad detectors
- scintillator for precise trigger timing: sigma of 1.3(1) ns
- resolution: ${\sim}80\,\mu m \times 50\,\mu m$

	Rate Studies at PSI	
	00	
	000	
Setup		

Schematics

- using PSI DRS4 Evaluation Board as digitizer for the pad waveforms
- using Digital Test Board (DTB) and pXar software for the telescope readout
- global trigger as coincidence of fastOR self trigger and scintillator signal
- EUDAQ as DAQ framework

		Rate Studies at PSI	
		000	
	00	0000	
Setup			

DAQ

- custom-built trigger unit to process the single triggers and provide global one for all devices
- saving event based data stream as binary file using EUDAQ

		Rate Studies at PSI	
		00	
		0000	
A LOSS LDS	te.		

Waveforms

- most frequented peak (\sim 70 ns): triggered signal
- $\bullet\,$ other peaks originate from other buckets ($\rightarrow\,$ resolve beam structure of $\approx\!\!19.7\,\text{ns})$
- system does not allow signals in pre-signal bucket due to fastOR trigger deadtime

M. Reichmann (ETHZurich)

	Rate Studies at PSI	
	00	
	0000	

Analysis and Results

Pulse Height Calculation

- finding the peak in the signal region
- integrating the signal in time fixed asymmetric integral around peak
- same integration for pedestal (base line \rightarrow noise)
- optimising the integral width by highest SNR (Integral / Pedestal Sigma)
- subtracting the pedestal from the signal integral on event-wise basis

	Rate Studies at PSI	
	00	
	0000	
 1.		

Analysis and Results

Pulse Height Distribution and Signal Maps

24th November 2016 18 / 24

M. Reichmann (ETHZurich)

		Rate Studies at PSI	
		00	
		000	
		0000	
Analysis and Resu	lts		

Signal vs. Particle Flux

- after all analysis steps: look for rate dependence of pCVD diamonds
- found diamond pad detectors that show no or very little dependence on rate
- $\bullet\,$ no dependence up to $1\times 10^{16}\,\text{neq/cm}^2$
- large systematic errors due to reproducibility

To do:

- test higher irradiated samples
- improve reproducibility
- prove the same for pixel detectors

	3D Detectors at CERN	

3D Detectors at CERN

			3D Detectors at CERN	
		00	•	
Working Principle	of a 3D Detector			

Working Principle of a 3D Detector

- insert electrodes perpendicular to the plane
 - reduce drift distance
 - increase collected charge in detectors with limited mean free path
- one readout electrode surrounded by four bias electrodes
- in diamond electrodes formed with a pulsed laser
 - transition of diamond to conducting material (graphitic material i.a.)

Figure: array of four 3D cells, bias electrodes in red, readout electrodes in green

			3D Detectors at CERN	
		00		
Beam Tests at CE	RN			

Beam Tests at CERN

- using more than 20 years old fixed telescope at SPS at CERN (high spatial resolution)
- testing multiple 3D strip detectors
- basic working principle has been proven
- full charge collection not yet reached in pCVD
- improve fabrication technique

Figure: Strassbourg Telescope

		Conclusion

Conclusion

		Conclusion
	00	

Conclusion

- High Luminosity LHC requires a new detector technology due to the highly increased radiation damage
- diamond detector designs viable option due to its radiation tolerance, among other advantages
- scCVD diamonds not suitable due to signal dependence on particle flux after irradiation
- pCVD diamonds show no rate dependence up to fluxes of $10\,MHz/cm^2$ and irradiations up to $1\times10^{16}\,neq/cm^2$
- successfully proven the working principle of a 3D diamond detector
- tested the very first 3D-Pixel detector

Ultimate Goal:

• build fully working pixel detector