Towards improved 1S-2S spectroscopy of positronium

Zurich PhD seminar 2016

Gunther Wichmann Precision Physics at Low Energy, Kirch Group Positron and Positronium Laboratory, Rubbia Group

November 25, 2016

Zurich PhD seminar 2016: Positronium 1S-2S spectroscopy

Gunther Wichmann

Why Positronium?

Positronium (e^+e^- , Ps): The **lightest atom** of the universe.

Energy levels known to very high precision from theory and experiment down to 1 ppb (9 digits).

 \Rightarrow sensitive probe for smallest effects (\rightarrow **new physics**).

Exotic Atoms

Von S B from Sydney, Australia - Cockatoos at breakfast, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=5445640

muonic hydrogen:

Pohl R, Antognini A, Nez F, Amaro FD, Biraben F, et al., Nature 466:213 (2010)

muonic deuterium:

Pohl R, Nez F, Fernandes L M P, Amaro F D, et al., Science 669-673 (2016)

Muonium ($e^{-}\mu^{+}$, Mu):

V. Meyer et al., Phys Rev. Lett. 84, 1136 (2000)

Positronium (e^+e^- , Ps):

M.S.Fee, A.P.Mills, Jr., S.Chu, E.D.Shaw, K.Danzmann, R.J.Chichester, and D.M.Zuckerman, Phys. Lett. 70, 1397 (1993)

Why improving the error?

The 1S-2S spectroscopy sensitive to $m\alpha$, $m\alpha^2$, $m\alpha^3$, ...

Proton radius puzzle: (due to muonic hydrogen) Test of bound-state QED without finite nuclear size effects.

Test of CPT symmetry and effect of gravity on anti-matter.

 \rightarrow Lorentz and CPT tests with hydrogen, antihydrogen, and related systems Kostelecky and Vargas, Phys. Rev. D 92, 056002 (2015)

Precision Test of bound-state QED

Testing the fine structure constant:
$$\alpha = \frac{1}{4\pi\epsilon_0} \frac{e^2}{\hbar c}$$

Energy levels of Ps by the Bohr Model: $(m = \frac{m_e + \cdot m_e^{-}}{m_e + m_e^{-}} = 0.26 \text{ MeV}/c^2)$

$$E_{1S-2S} = -\frac{me^4}{8h^2\epsilon_0^2} \left[\frac{1}{2^2} - \frac{1}{1^2}\right] = 6.802 \,\text{eV} \cdot \frac{3}{4} = 5.102 \,\text{eV} \quad (1233.7 \,\text{THz})$$

The best measured value is 1233.607 216 4^1 THz \pm 3.2 MHz (9 digits). A difference of 80 GHz (4 digits).

¹M.S.Fee, A.P.Mills, Jr., S.Chu, E.D.Shaw, K.Danzmann, R.J.Chichester, and D.M.Zuckerman, Phys. Lett. 70, 1397 (1993)

Precision Test of bound-state QED

Rigorous calculations possible with derivations of the Kernel of the **Bethe-Salpeter** equation for the two-body problem.

QED calculations completed to the order of $m\alpha^6$. a systematic error level of $\pm 1 \text{ MHz}$ (9 digits).

Krzysztof Pachucki and Savely G. Karshenboim, PRL 80, Nr.10, 1998

Ongoing work for $m\alpha^7$.

e.g. Adkins, Gregory S. and Kim, Minji and Parsons, Christian and Fell, Richard N., PRL 115, 233401, 2015

Matter / anti-matter mass and charge?

ALPHA experiment:

Charge neutrality of antihydrogen

Long-term goal **atomic spectra** of antihydrogen

Actual crossing not at zero.

From talk of M.Fujiwara at the PSI2016 conference

The Experiment

Positronium 1S-2S transition

From talk of P.Crivelli at the PSI2016 conference

Positronium and Muonium 1S-2S Laser Spectroscopy as a Probe for the SME P. Crivelli, G. Wichmann, arXiv:1607.06398, 21 Jul 2016 + < = > =

The Experiment

Predecessor:

D.Cooke et al, Hyperfine Interact. 233 (2015) [arXiv:1503.05755 [physics.atom-ph]]

- \rightarrow too high noise level.
- \rightarrow frequency reference only by
 - a wavemeter ($\pm 10 \text{ MHz}$).

- $\Rightarrow e^+$ in bunches would reduce noise level.
- \Rightarrow frequency reference should be improved.

Bunched Positron Beam

A B F A B F

Buffer Gas Trap

Gunther Wichmann

- \Rightarrow Noise level reduction is achieved by e^+ bunching!
- \Rightarrow Time window for hitting the converter generated! (start trigger)

magnetic shielding

- para-Ps $(1^1S_0, \text{ anti-parallel spins})$ with a lifetime of 0.125 ns and ortho-Ps $(1^3S_1, \text{ parallel spins})$ with a lifetime of 142.05 ns is produced.
- para-Ps decays into \geq 2 photons, ortho-Ps into \geq 3 photons.
- Mean Ps emission time is in the range of ns.
 - \Rightarrow Only ortho-Ps can exit the converter before annihilation.
 - \Rightarrow Monochromatic emission velocity: $v_{Ps} \approx 10^5 m/s \pm 2\%$

1S-2S transition

- The 1S2S transition corresponds to 1234 THz or 243 nm.
- Direct excitation from S-state to S-state with two counter propagating photons of 486 nm.

- \Rightarrow No first order Doppler shift.
- \Rightarrow High laser intensity needed.

Laser Cavity

Laser Cavity

Laser Cavity

Laser excitation

Laser excitation

Optical Bloch equation with second order Doppler shift: (\approx 60 MHz shift)

$$f_{\Sigma} = f_{\beta} + f_{-\beta} = f_0 \cdot \left(\sqrt{\frac{1+\beta}{1-\beta}} + \sqrt{\frac{1-\beta}{1+\beta}}\right) \approx 2f_0 \cdot \left(1 + \frac{\beta^2}{2}\right)$$

Zurich PhD seminar 2016: Positronium 1S-2S spectroscopy

Gunther Wichmann

The Laser System

< 🗇 > < 🖃 >

The Laser System and Cavity

Conclusion

- pulsed e^+ beam working.
- MCP detector and cavity installed.
- \rightarrow Test of detection scheme by pulsed laser excitation with 486 nm and 730 nm laser. (see also talk of M.Heiss)

Beginning of next year:

- \rightarrow change to CW laser for spectroscopy.
- \Rightarrow Precision in sub-MHz range, reaching order of $m\alpha^7$.

Acknowledgment

<u>P. Crivelli</u>, D. Cooke, P. Comini, C. Vigo, L. Gerchow, M. Heiss

K. Kirch, A. Antognini, K. Schuhmann, D. Taqqu, M. Rawlik

supported by coffee and ETH-35 14-1