

Search for Supersymmetry with opposite sign dileptons with the CMS detector

- Leonora Vesterbacka
 - ETH Zürich
- PhD Seminar, ETH Zürich
 - 24/11-2016

ETHzürich PhD Seminar 24/11-2016, ETH Zürich The Large Hadron Collider and CMS

Total weight Overall length Magnetic field

CERN Accelerator Complex and the LHC

CRYSTAL ELECTROMAGNETIC

Leonora Vesterbacka

ETHzürich Supersymmetry

New fundamental, broken, symmetry

- provides super partners to standard model (SM) particles
- assigns a new fermion (boson) to every SM boson (fermion)

Theoretically attractive, since it:

- stabilizes the mass hierarchy problem
- facilitates grand unification theory
- provides a good dark matter candidate

Leonora Vesterbacka PhD Seminar 24/11-2016, ETH Zürich

ETHzürich SUSY with opposite sign dileptons

Final states with opposite sign dileptons can occur in both strongly or electroweakly produced SUSY decay chains involving W/Z bosons and/or sleptons

Our search targets two opposite sign same flavour leptons, jets and high missing transverse momentum, E^{miss}

Final states with opposite sign dileptons can occur in both strongly or electroweakly produced SUSY decay chains involving W/Z bosons and/or sleptons

Our search targets two opposite sign same flavour leptons, jets and high missing transverse momentum, E^{miss}

GMSB (gluino induced):

- some jets
- large E_T^{miss}
- two leptons originating from an onshell Z boson

Final states with opposite sign dileptons can occur in both strongly or electroweakly produced SUSY decay chains involving W/Z bosons and/or sleptons

Our search targets two opposite sign same flavour leptons, jets and high missing transverse momentum, E^{miss}

GMSB (gluino induced):

- some jets
- Iarge E_T^{miss}
- two leptons originating from an onshell Z boson

Slepton (sbottom induced):

- some jets
- Iarge E^{miss} ■
- either a cascade decay of a Neutralino and a slepton resulting in two opposite sign leptons, kinematic edge in m
- or an off-shell Z boson giving two opposite sign leptons

Final states with opposite sign dileptons can occur in both strongly or electroweakly produced SUSY decay chains involving W/Z bosons and/or sleptons

Our search targets two opposite sign same flavour leptons, jets and high missing transverse momentum, ET miss

GMSB (gluino induced):

- some jets
- Iarge E_T^{miss}
- two leptons originating from an onshell Z boson

- some jets
- Iarge E^{−^{miss}}
- either a cascade decay of a Neutralino and a slepton resulting in two opposite sign leptons, kinematic edge in m_{ll}
- or an off-shell Z boson giving two opposite sign leptons

EWK (Chargino/Neutralino induced):

- some jets
- large E_τ
- 2 leptons from the Z boson

This analysis is done using LHC Run II data recorded in 2016 corresponding to an integrated luminosity of 12.9 fb⁻¹ Results were presented for ICHEP in August 2016, new developments for the analysis are made to target a publication by March 2017. Baseline selection of 2 opposite sign same flavour leptons ($p_T 25/20$ GeV), $E_T^{miss} > 150$ GeV, at least two jets

This analysis is done using LHC Run II data recorded in 2016 corresponding to an integrated luminosity of 12.9 fb⁻¹ Results were presented for ICHEP in August 2016, new developments for the analysis are made to target a publication by March 2017. Baseline selection of 2 opposite sign same flavour leptons ($p_T 25/20$ GeV), $E_T^{miss} > 150$ GeV, at least two jets

Inclusive m_{II}:

- model backgrounds and signal with shapes
- fit signal and background

This analysis is done using LHC Run II data recorded in 2016 corresponding to an integrated luminosity of 12.9 fb⁻¹ Results were presented for ICHEP in August 2016, new developments for the analysis are made to target a publication by March 2017. Baseline selection of 2 opposite sign same flavour leptons (p_T 25/20 GeV), E_T^{miss} >150 GeV, at least two jets

in CMS IN 2006/012, L.Pape, e.g. for a 3-body: $M_{ll}^{max} = M_X - M_0$

This analysis is done using LHC Run II data recorded in 2016 corresponding to an integrated luminosity of 12.9 fb⁻¹ Results were presented for ICHEP in August 2016, new developments for the analysis are made to target a publication by March 2017. Baseline selection of 2 opposite sign same flavour leptons (p_T 25/20 GeV), E_T^{miss} >150 GeV, at least two jets

in CMS IN 2006/012, L.Pape, e.g. for a 3-body: $M_{ll}^{max} = M_X - M_0$

ETHzürich PhD Seminar 24/11-2016, ETH Zürich History of the analysis: Edge/Off-Z

Reminder:

The Edge/Off-Z part of the analysis predicts a kinematic edge in the invariant mass of the two leptons

In the LHC Run I CMS reported an excess of 2.6 sigma at an invariant mass of 78 GeV This could not be verified with the first Run II data collected in 2015

Leonora Vesterbacka

Leonora Vesterbacka ETHzürich PhD Seminar 24/11-2016, ETH Zürich History of the analysis: On-Z

In the LHC Run I ATLAS reported an excess of 3.0 sigma, and in the first Run II data collected in 2015, an excess of 2.2 sigma

Reminder:

The On-Z part of the analysis targets an excess in the Z mass window in E_T^{miss} tails

ETHzürich Background prediction

On-Z:

- ~50% Z+jets, predicted using E_T^{miss} templates
- ~50% flavour symmetric backgrounds (e.g. ttbar) Edge/Off-Z:
- ~98% flavour symmetric backgrounds (e.g. ttbar)

Flavour symmetric backgrounds (e.g. ttbar):

relies on the flavour symmetry of the W decay (#SF ~#OF events)

SF signal estimated from OF control sample

 correct for different trigger, object and reconstruction efficiencies

Z+jets background:

- E_T^{miss} in Z \rightarrow II is mainly from jet mismeasurements and detector effects
- Use the fact that the E_T^{miss} in γ +jets events as in Z→II events

Rare processes:

• processes with real E_T^{miss} from neutrinos are taken directly from simulation (WZ, ZZ, ttZ)

ETHzürich Run II developments: Edge/Off-Z

Background rejection:

In the edge/off-Z counting search, ttbar is ~the only background.

Top likelihood classification:

- Use four characteristic ttbar variables:
 - dR between the leptons, di-lepton p_T , E_T^{miss} , sum of the two m_{lb}'s
 - Extract these events in data by selecting opposite flavour leptons (~100% ttbar)
- The NLL variable is defined as -2log(Likelihood)
 - where the likelihood is the product of the probabilities from the four ttbar pdf's

This NLL allows us to bin in ttbar efficiency

ttbar like (95% efficiency) and non-ttbar like (5% efficiency)

Diagram of a fully leptonic ttbar process:

Diagram of a signal SUSY process: P_2 χ_2 b15

ETHzürich Results: On-Z ATLAS region

ATLAS reported an excess of 3.0 sigma in Run I and 2.2 sigma in Run II (2015) Two background prediction methods are used to attempt to verify this excess • The E_T^{miss} templates show good agreement between predicted and observed: 44 ± 8 vs. 51 ATLAS has also recently published a paper with 2016 data where they report no excess

ETHzürich Interpretation

Off-Z/Edge search: direct sbottom production

Leonora Vesterbacka PhD Seminar 24/11-2016, ETH Zürich

Leonora Vesterbacka ETHzürich PhD Seminar 24/11-2016, ETH Zürich Outlook: Analysis adaptation for full 2016 data

- The results presented above were obtained using **12.9** fb⁻¹ of data
- Now the analysis needs to be adapted to account for the full statistics obtained in the 2016 ($\sim 35 \text{ fb}^{-1}$) include new baseline cuts to reduce backgrounds

 - reoptimize signal regions to maintain or improve sensitivity 0
 - include low cross section signal models

Leonora Vesterbacka PhD Seminar 24/11-2016, ETH Zürich

ETHzürich New baseline selections

 M_{T2} :

The M_{T2} is a generalization of the transverse mass for decay chains with two unobserved particles

• gives $M_{T2} < E_T^{miss}$ for SUSY events and $M_{T2} \rightarrow 0$ for multijet-like events

- Very efficient to reduce e.g. ttbar background
- $M_{T2} > 80$ GeV proposed as a new baseline cut

$$\Delta \phi(jet_{1,2}, E_T^{miss})$$
:

A cut on the angle between the jets and the E_T^{miss} reduces backgrounds from mismeasured jets, e.g. Drell-Yan

• $\Delta \phi(\text{jet}_{1,2}, E_T^{\text{miss}}) > 0.4 \text{ proposed as a new baseline cut}$

Leonora Vesterbacka PhD Seminar 24/11-2016, ETH Zürich

ETHzürich On-Z new signal regions

- $|M_{\parallel} M_7| < 5 \text{ GeV}$ (NEW) to reduce FS backgrounds
- M_{T2} (NEW) to suppress ttbar
- 3rd lepton veto (NEW) to suppress WZ and ttZ
 - Veto leptons that pass either veto lepton from multilepton analysis OR isotrack from MT2 analysis
- Lowest signal region starts at $E_T^{miss} > 100 \text{ GeV}$
- Binning in H_T , njets and btags (NEW)

OLD binning				Ν	
N _{jets}	2-3 jets	> 4 jets			
H_{T}	>400 GeV	No Cut		N _{jets}	
ATLAS SR	$(H_T + p_{T1} + p_{T1})$	$p_{T2} > 600$ $E_{miss} > 225$		Η _T	
	GeV			MT2	

EW binning

B-veto				
3	4-5	≥ 6		
500 GeV		No Cut		
> 80 GeV				

NEW binning

With bs			
N _{jets}	2-3	4-5	2
Η _T	> 200) GeV	No
MT2		> 100 Ge\	/
	2	20	

Leonora Vesterbacka ETHzürich PhD Seminar 24/11-2016, ETH Zürich Edge new signal regions

With the full dataset new binning needs to be introduced to keep the sensitivity

- $E_T^{miss} > 150 \text{ GeV}$
- New cut on $M_{T_2} > 80$ GeV and binning in m_{\parallel}
- Proposition:
 - Signal Regions with 7 mass bins [20-60, 60-86, 96-150, 150-200, 200-300, 300-400, 400+] and ttbar and non-ttbar like classification as signal regions
- Include the region with the 3 sigma deviation we had at ICHEP

OLD binning

mև [GeV]	<81	> 101	mແ [GeV]
ttbar			ttbar
non-tthar			non-ttbar

NEW binning + M_{T2} > 80 GeV 60-86 96-150 20-60 150-200 200-300 300-400

Leonora Vesterbacka PhD Seminar 24/11-2016, ETH Zürich

ETH zürich EWK SUSY searches

EWK targeted search:

- The On-Z search can be extended to target electroweakly produced SUSY, i.e. LSPs produced in association with WZ, ZZ (NEW) and HZ (NEW)
- The previously optimized cuts ($\Delta \phi$ (jet₁, E_T^{miss}) > 1) to reduce Z+jets for WZ signal a bit too aggressive
 - New cut proposed to reduce Z+jets
 - m_{jj} < 110 GeV (where the mjj is made with the jets closest ϕ).

35.0 fb⁻' (13 TeV 400 600 800

22

ETHzürich Summary

A search for Supersymmetry using opposite sign dileptons was motivated and presented

- The results presented were obtained using data recorded with the CMS detector at 13 TeV in the first half of 2016 (12.9 fb⁻¹), published in CMS PAS SUS-16-021 for ICHEP
- New developments have been implemented for the Run II data taking to improve the analysis and facilitate potential discoveries
- Run I excesses reported by ATLAS and CMS has been attempted to verify
 - without luck, the observed events agree well with the standard model expectation
 - Imits have been set on the masses of the sparticles produced in the three targeted SUSY models
- New developments of the analysis have been done to account for the full set of data collected in 2016
- A paper is planned to be published with the full Runll dataset by March next year

Leonora Vesterbacka PhD Seminar 24/11-2016, ETH Zürich

Backup

24

ETH zürich PhD Seminal Results: Edge/Off-Z

Perform a fit on the baseline selection on the invariant mass spectrum

- simultaneous fit OF+SF for ttbar
- best fit at 132 GeV (148 ± 80 events)

The Off-Z counting shows disagreement

- in one signal region
- 3.1 sigma local

0	_	ttbar-like	non-ttbar-like
	pred. FS	1374.4 ± 48.1	105.8 ± 10.9
mll < 81 CoV	pred. DY	13.5 ± 4.6	7.3 ± 2.5
$\operatorname{IIIII} < \operatorname{OI}\operatorname{GeV}$	pred. total	1387.9 ± 48.3	113.1 ± 11.2
	obs	1417	135
	pred. FS	2435.8 ± 72.2	208.3 ± 15.7
mll $> 101 CoV$	pred. DY	7.6 ± 2.6	4.1 ± 1.4
IIII > 101 GeV	pred. total	2443.4 ± 72.3	212.4 ± 15.7
	obs	2347	285
	obs	2347	285

Leonora Vesterbacka PhD Seminar 24/11-2016, ETH Zürich

ETHzürich Results: On-Z

The On-Z results show good agreement in all signal regions

The EWK targeted search show good agreement between predicted and observed events

MET region	150 – 225 GeV	225 – 300 GeV	\geq 300 GeV
Other rare	1.53 ± 0.79	0.80 ± 0.45	0.40 ± 0.23
WZ	7.01 ± 2.16	2.67 ± 0.85	2.61 ± 0.84
ZZ	4.20 ± 1.98	2.60 ± 1.36	2.03 ± 1.08
DY prediction	18.28 ± 2.91	4.69 ± 2.32	2.73 ± 1.56
tī	3.91 ± 1.36	0.50 ± 0.27	0.10 ± 0.11
Total bkg	34.9 ± 4.4	11.3 ± 2.9	7.9 ± 2.1
Observed	45	15	7

Leonora Vesterbacka PhD Seminar 24/11-2016, ETH Zürich

$N_{\rm jets}/H_{\rm T}$	$N_{ m b-jets}$	$E_{\rm T}^{\rm miss}$ (GeV)	Predicted	Observed
		100-150	$169.6 \ ^{+16.1}_{-15.7}$	177
SRA	0	150-225	$43.6 \ ^{+7.1}_{-6.3}$	45
	0	225-300	$24.3 \ ^{+12.7}_{-12.4}$	11
2–3 jets		> 300	$15.0 \ ^{+4.8}_{-3.8}$	23
		100-150	77.2 $^{+9.2}_{-8.1}$	87
and $H_{\rm T} > 400 {\rm GeV}$	> 1	150-225	$40.0 \ ^{+7.4}_{-6.2}$	34
and $\Pi_1 > 100 \text{ GeV}$	<u>~</u> 1	225-300	$12.0 \ ^{+4.6}_{-3.4}$	22
		> 300	$11.5 \ _{-3.3}^{+4.5}$	11
		100-150	$126.3 \ ^{+12.5}_{-11.8}$	122
SRB	0	150-225	$39.5 \ ^{+7.0}_{-5.9}$	45
		225-300	$11.7 \ _{-3.1}^{+4.4}$	11
		> 300	$5.7 {}^{+3.3}_{-2.1}$	7
		100-150	$240.8 \ ^{+18.9}_{-16.1}$	238
\geq 4 jets	> 1	150-225	$81.2 \ _{-9.6}^{+10.7}$	99
	<u>~</u> 1	225-300	$24.1 \ ^{+6.1}_{-5.0}$	24
		> 300	$7.2 {}^{+3.9}_{-2.6}$	7
ATLAS - SR:				
$H_{\rm T} + p_{\rm T} \ell_1 + p_{\rm T} \ell_2 > 600 {\rm GeV}$	$E_{\rm T}^{\rm miss} > 225 { m GeV}$	$\Delta \phi_{E_{ ext{T}}^{ ext{miss}},j_{1},j_{2}} > 0.4$	$44.1 \ _{-7.5}^{+8.4}$	51

Leonora Vesterbacka ETHzürich PhD Seminar 24/11-2016, ETH Zürich Results: Run I CMS legacy region

CMS Run I excess signal region kept for verification

- E_T^{miss} : 100 GeV if > 3 jets (central leptons)
- E_T^{miss} : 150 GeV if > 2 jets (central leptons)
- Results in numbers:
 - observed: 2170
 - predicted: 2053 +- 68 (1.4 sigma local significance) \bigcirc

Leonora Vesterbacka ETHzürich PhD Seminar 24/11-2016, ETH Zürich Top likelihood classification

The four characteristic troat variables used as input in the NLL variable: • dR between the leptons, di-lepton p_T , E_T^{miss} , sum of the two m_{lb} 's

ETHzürich PhD Seminar 24/11-2016, ETH Zürich Top likelihood classification

Leonora Vesterbacka

CN

ETHzürich Fits

Fitted shape for backgrounds containing a Z boson for dielectron and dimuon events. The fitted shape consists of an exponential (green) and a Breit-wigner convolved with a double-sided Crystal-Ball (red), whose sum (blue) describes the backgrounds containing a Z boson

ETHzürich M_{T2}

The M_{T2} is a generalization of the transverse mass for decay chains with two unobserved particles Division of events into two massless pseudo jets

- $M_{T2}(m_c) = \min_{\vec{p}_T^{c(1)} + \vec{p}_T^{c(2)} = \vec{p}_T^{miss}} \left[max(M_T^{(1)}, M_T^{(2)}) \right]$
- this gives $M_{T2} < E_T^{mss}$ for SUSY events and $M_{T2} \rightarrow 0$ for multijet-like events
- If all masses are known, M_{T2} will have an endpoint at the parent mass ($\sim M_T$)
- Very efficient to reduce that and other backgrounds

ETHzürich HSF/OF

direct measurement ME_T 50-100, == 2 jets

	N_{SF}	N _{OF}	$R_{SF/OF} \pm \sigma_{stat}$	
Data	4901	4495	1.090 ± 0.023	
MC	5120.3	4649.4	$1.101 {\pm} 0.003$	
	Nee	N _{OF}	$R_{ee/OF} \pm \sigma_{stat}$	
Data	1822	4495	$0.405 {\pm} 0.011$	
MC	1930.2	4649.4	$0.415 {\pm} 0.001$	
	$N_{\mu\mu}$	N _{OF}	$R_{\mu\mu/OF} \pm \sigma_{stat}$	
Data	3079	4495	$0.685 {\pm} 0.016$	
MC	3190.2	4649.4	$0.686 {\pm} 0.003$	

factorized method: $R_{SFOF} = 0.5^* (r_{\mu e} + r_{\mu e}^{-1})^* R_T$ $R_T = sqrt(ee_T^*\mu\mu_T)/e\mu_T$ $r\mu e = sqrt(ee/\mu\mu)$

from factorization method from direct measurement weighted avarage

Leonora Vesterbacka PhD Seminar 24/11-2016, ETH Zürich

This analysis is done using LHC Run II data recorded in 2016 corresponding to an integrated luminosity of 12.9 fb⁻¹ Results were presented for ICHEP in August 2016, new developments for the analysis are made to target a publication by March 2017. Baseline selection of 2 opposite sign same flavour leptons ($p_T 25/20 \text{ GeV}$), $E_T^{\text{miss}} > 150 \text{ GeV}$, at least two jets

Leonora Vesterbacka

ETHzürich PhD Seminar 24/11-2016, ETH Zürich Systematic uncertainties for the signal

Source of uncertainty Luminosity Pileup b tag modeling Lepton reconstruction and isolation Fast simulation scale factors Fast simulation MET uncertainty Trigger modeling Jet energy scale ISR modeling Statistical uncertainty Total uncertainty

Leonora Vesterbacka PhD Seminar 24/11-2016, ETH Zürich

ETHzürich Objects and triggers

12.9 fb⁻¹ of 2016 data

'standard' muons and electrons special in this analysis: veto crack region |eta| from 1.4 - 1.6 medium Muon ID, minilso < 0.2 electron MVA ID, minilso < 0.1 $p_{T_1} > 25$, $p_{T_2} > 20$ GeV, select the hardest pair

corrected jets and type-1 ME_T with V6 JECs jet-p_T > 35 GeV b-jet-p_T > 25 GeV for b-jet veto

plethora of di-lepton triggers, isolated and non-isolated trigger efficiency measured in JetHT

